
COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies

Volume 5, Issue 1, Jan-Jun 2025, pp. 1-23

DOI: 10.17492/computology.v5i1.2501

https://www.journalpressindia.com/cjacsit

© 2025 Journal Press India

GENDroid: A Optimized Hybrid Android Malware Detection Framework via

Multimodal Feature Fusion and Genetic Algorithm

Ankit Singh*

ABSTRACT

The rapid growth of Android applications has been accompanied by a surge in malicious apps

that exploit system permissions and static components to bypass conventional security defenses.

While static analysis has proven useful for early malware detection, many existing approaches

fall short due to limited feature representation and a lack of adaptability to evolving threats.

This paper introduces GENDroid, a novel framework that enhances Android malware detection

by combining multi-modal static feature fusion with evolutionary optimization. GENDroid

integrates diverse features—including permissions, API calls, and intent filters—into a unified

representation, enabling a deeper understanding of application behavior. To optimize both

feature selection and classifier performance, a Genetic Algorithm (GA)-driven strategy is

employed, allowing the system to evolve and adapt automatically. The optimized feature set is

used to train an ensemble of machine learning classifiers on a comprehensive dataset

comprising both real-world and synthetic Android applications. Experimental results

demonstrate that GENDroid delivers high detection accuracy, significantly reduces false

positives, and remains robust against adversarial variants. Its modular design also allows for

the seamless integration of additional static or behavioral features. By intelligently combining

feature diversity with adaptive learning, GENDroid provides a practical and scalable solution

for Android malware detection, effectively addressing the limitations of traditional static

analysis techniques.

Keywords: Android Malware Detection; Static Analysis; Multi-Modal Feature Fusion;

Permission-to-Exploitation Mapping; Genetic Algorithms; Feature Selection; Machine

Learning; Ensemble Learning; Adversarial Robustness; APK Analysis.

1.0 Introduction

 The widespread use of Android-powered products has significantly altered the

mobile ecosystem, allowing millions of applications to deliver a wide range of features to

users around the world.

*Student, Department of Computer Engineering, NIT-Kurukshetra, Haryana, India

(E-mail: emailto.ankit123@gmail.com)

https://www.journalpressindia.com/cjacsit
https://www.journalpressindia.com/computology-journal-of-applied-computer-science-and-intelligent-technologies/doi/10.17492/computology.v4i2.2401
https://www.journalpressindia.com/cjacsit

2 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

 Since Android dominates the global market for mobile operating systems, hackers

have found it to be a profitable target due to its open source nature, adaptability, and wide

use. Serious security and privacy issues have been raised by the increase in malicious programs

for Android, which have an effect on both individual users and business systems.

1.1 Background and motivation

 Conventional malware detection methods, such run-time behavior analysis and

signature-based scanning, frequently find it difficult to stay up with the quickly changing

threat ecosystem. Signature-based methods are useless against obfuscated versions and

zero-day attacks since they require prior knowledge of malware patterns. However, because

they depend on runtime execution and monitoring settings, dynamic analysis techniques—

while effective—tend to be resource-intensive and less scalable. In order to get over these

restrictions, this study suggests GENDroid, a fresh static malware detection framework that

incorporates two significant breakthroughs. In order to provide a more comprehensive

semantic representation of Android apps, it first makes use of multi-modal feature fusion,

which combines permissions, API call patterns, and intent filters. Second, it uses Genetic

Algorithms (GAs) to optimize the classifier and perform automatic feature selection. This

enables the system to adapt dynamically and sustain high detection performance as threat

patterns change. GENDroid provides a scalable, intelligent, and reliable method for

detecting Android malware thanks to these improvements.

1.2 Security gaps

 The open-source nature of the Android operating system has contributed

significantly to its widespread adoption by enabling a large and diverse developer

community to build a wide range of applications. This flexibility allows device

manufacturers and software developers to customize the platform, offering tailored user

experiences and innovative features that further fuel its popularity. However, the same

openness that fosters innovation also introduces critical security concerns. Since the source

code is publicly accessible, malicious actors can analyze it to identify vulnerabilities and

craft sophisticated exploits. Moreover, Android’s support for third-party application

marketplaces—many of which lack rigorous security vetting—provides an additional vector

for the distribution of malicious software.

1.3 Objective

 This work presents the design and implementation of a scalable and modular

malware detection framework for Android, with the following core objectives:

GENDroid: A Optimized Hybrid Android Malware Detection Framework via Multimodal

Feature Fusion and Genetic Algorithm

3

• To develop a static analysis-based detection system that combines diverse sources of

information extracted from Android application packages (APKs), such as manifest

declarations and code-level components.

• To improve the semantic richness of extracted features by incorporating a structured

mapping between static indicators and potential exploitation behaviors.

• To apply Genetic Algorithms (GAs) for: Automatic selection of the most discriminative

feature subsets Hyperparameter tuning of classifiers to maximize detection accuracy.

• To construct an optimized ensemble of machine learning models capable of robust

malware identification across varied samples.

• To evaluate the framework’s effectiveness using real-world and adversarial datasets,

employing multiple performance metrics including accuracy, precision, recall, F1-

score, and AUC.

 The proposed framework is designed to operate exclusively through static analysis,

without requiring code execution or runtime instrumentation. The detection pipeline

functions offline and consists of APK decompilation, feature extraction, evolutionary

optimization, and supervised classification. While dynamic analysis and real-time

deployment are outside the scope of this study, the architecture has been intentionally built

with modularity in mind—facilitating future integration of dynamic features or behavioral

models as extensions.

2.0 Related Work

 The exponential growth of Android applications has made mobile platforms

increasingly vulnerable to malware attacks. With the Android operating system accounting

for a significant share of the global mobile market, adversaries continue to exploit its open-

source architecture, app distribution model, and user permission system. In response, the

research community has developed a wide range of Android malware detection

frameworks, primarily categorized as static, dynamic, and hybrid approaches. This chapter

presents a detailed review of recent studies in static malware detection, the role of

machine learning, multi-feature analysis, and optimization strategies that inform the design

of the proposed GENDroid framework.

 Wajahat et al. (2024) demonstrated that selecting a subset of meaningful

permissions using Recursive Feature Elimination (RFE) and SHAP values significantly

improved detection accuracy while reducing feature space, achieving an F1-score above

0.99. Gupta et al. (2024) leveraged rough set theory to eliminate redundant permission

features and prioritize those most indicative of malicious behavior. Odat & Yaseen (2023)

constructed a co-occurrence matrix of permissions and API calls and utilized FP-growth

4 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

algorithms to identify strong feature associations. Their method achieved a detection rate of

98%, outperforming permission-only models. Mahindru & Sangal (2021), through

MLDroid, used a combination of APIs, app metadata, and permissions. Their results

confirmed that integrating diverse feature types with ensemble classifiers like Random

Forest and Gradient Boosted Trees outperformed models trained on single-feature sets.

 Vu & Jung (2021) developed AdMat, a model that represents Android app features

as adjacency matrices and feeds them into a Convolutional Neural Network (CNN). Their

model achieved a high detection rate of 98.26%, demonstrating robustness even with

smaller training datasets. Surendran et al. (2020) employed graph signal processing on

system call graphs. By using only 16-dimensional feature vectors and training with Random

Forests and Decision Trees, the model achieved 99% accuracy while maintaining low

computational overhead.

 Liu et al. (2024) proposed SeGDroid, which constructs sensitive function call

graphs from decompiled apps. By pruning irrelevant edges and nodes, they enhanced both

malware detection (98). Mehtab et al. (2020) presented AdDroid, a rule-based engine using

a handcrafted feature set and an Adaboost-based ensemble classifier. The system reached

99.11. Almarshad et al. (2023) addressed the data scarcity problem using a Siamese

network for few-shot learning. By coupling this with conventional classifiers, they achieved

98.9% accuracy on the Drebin dataset, illustrating its applicability in low-data scenarios.

 Alani & Awad (2022) introduced PAIRED, a framework that combined SHAP

values and recursive elimination to identify the most impactful permission features. The

model achieved accuracy above 98% using tree-based ensemble classifiers.

 Alkahtani & Aldhyani (2022) employed correlation-based feature filtering followed

by classification using SVM, LSTM, and CNN-LSTM models. Remarkably, their SVM

model attained 100% accuracy on the CI-CAndMal2017 dataset, while deep learning

models surpassed 98%, underscoring the importance of filtering and classifier alignment.

Although prior research in Android malware detection has introduced a variety of machine

learning-based approaches, several key limitations continue to hinder the effectiveness,

adaptability, and scalability of these systems. The following challenges, observed across

state-of-the-art studies, motivate the need for a more robust solution:

• Limited Dataset Scale and Currency: Many studies rely on small or outdated datasets,

which can reduce the generalizability and real-world relevance of their models. This

hinders the system’s ability to detect newly emerging or mutated malware variants.

• Inefficient Feature Representation: Several approaches either underutilize key static

attributes or fail to apply intelligent feature reduction, resulting in unnecessarily large

feature spaces that may include redundant or irrelevant dimensions.

GENDroid: A Optimized Hybrid Android Malware Detection Framework via Multimodal

Feature Fusion and Genetic Algorithm

5

• Scalability Bottlenecks: The architectural design of many frameworks lacks support for

modular expansion or efficient processing of large-scale datasets, which is critical given

the continuous growth of Android applications in the wild.

• Incremental Learning Capabilities: Most existing models are trained in a batch mode

using classical machine learning methods, which require full retraining to incorporate

new data. This leads to inefficiencies in model maintenance and delays in adapting to

evolving threat landscapes.

3.0 Proposed Methodology

 With mobile applications deeply integrated into users’ lives, permissions are often

granted without a clear understanding of their security implications. Malicious Android

applications exploit these permissions to gain unauthorized access to sensitive data or

functionalities, leading to severe privacy and security threats. To address this challenge,

GENDroid presents a multi-modal, static-analysis-based malware detection framework. It

integrates diverse static features—primarily permissions and app metadata—using a hybrid

of semantic transformation and machine learning techniques. The framework enhances

detection accuracy and interpretability by combining Permission-to-Exploitation Mapping

(PEM) with Genetic Algorithm-based optimization and an ensemble of classifiers.

• Input from the Drebin dataset, a benchmark labelled dataset of Android applications

(both benign and malicious).

• Extraction of static features, including permissions, API usage, and other manifest-level

metadata.

• Multi-modal feature transformation, where permission features are semantically

mapped into high-level exploitation categories via the PEM dictionary, and combined

with other static features.

• Optimization via Genetic Algorithm, which selects the most relevant features and tunes

hyperparameters (e.g., number of estimators, tree depth) for Random Forest.

• Training of an ensemble of classifiers, including Random Forest (RF), Multi-Layer

Perceptron (MLP), Naive Bayes (NB), and Passive Aggressive (PA); PA supports

incremental learning for scalability.

• Final malware classification through majority voting, based on consensus among the

classifiers.

• Evaluation of detection performance using metrics such as Accuracy, Precision, Recall,

F1 Score, and AUC.

6 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

 By fusing multiple feature modalities and leveraging evolutionary learning,

GENDroid achieves efficient, scalable, and interpretable Android malware detection.

 Figure 1 illustrates the flow chart of the architecture of the GENDroid Malware

Detection framework.

Figure 1: Flow Chart of the GENDroid

Source: Author’s own

3.1 Dataset collection and overviews

 A robust and reliable dataset is fundamental to the development and evaluation of

any malware detection framework. For this purpose, the GENDroid framework utilizes the

Drebin dataset, a publicly available and widely recognized Android malware dataset

introduced by Arp et al. This dataset offers a comprehensive static analysis view of Android

applications, encompassing a broad range of behavioral indicators, and serves as a standard

benchmark in academic and industrial research.

• Dataset Source and Composition: The Drebin dataset comprises 5,560 Android

application samples, including 5,156 malicious apps, collected from multiple third-party

GENDroid: A Optimized Hybrid Android Malware Detection Framework via Multimodal

Feature Fusion and Genetic Algorithm

7

markets and verified using VirusTotal.404 benign apps, primarily sourced from the

Google Play Store. Each application in the dataset has been statically analyzed to

extract various features from its APK components (e.g., AndroidManifest.xml, DEX

code). These features span multiple categories like PermissionsIntent, filtersAPI,

callsNetwork, addressesHardware, componentsApp, components (activities, services,

etc.) This extensive multi-source feature extraction results in a sparse binary feature

matrix with over 123,000 unique feature keys, which represent the presence or absence

of specific attributes in each app.

• Multi-Modal Feature Representation in GENDroid: While the original Drebin dataset

includes a large and heterogeneous feature space, GENDroid adopts a multi-modal static

feature integration approach to construct a more semantically meaningful and compact

representation. The following modalities are incorporated: Raw Permission Features:

Direct binary indicators of Android permissions declared in the manifest file. Non-

Permission Static Features: Additional manifest-level metadata not categorized under

permissions, such as services, actions, and receivers. These provide auxiliary signals

about the app’s behavior. PEM-based Semantic Features: To enhance semantic

interpretability, permissions are transformed using a Permission-to-Exploitation

Mapping (PEM) dictionary. This dictionary clusters permissions into high-level

behavioral exploitation categories as shown in Table 1. Table 1 presents the mapping of

Android permissions to high-level malware exploitation techniques. This mapping is

adapted and extended from the PermGuard framework permguard (Ahmad, 2021),

which categorizes permissions based on common malicious behaviors observed in

Android malware. Additional categories were included in our work by analyzing

uncategorized features and associating them with relevant exploitation patterns using

Android developer documentation and malware behavior reports.

• Data Preprocessing Workflow: The preprocessing pipeline is as follows:

o Label Encoding: Malware samples are labeled as 1, benign as 0.

o Missing Value Handling: Any ambiguous values are imputed as zeros.

o PEM Feature Engineering: A new PEM-transformed matrix is generated by

mapping requested permissions to their corresponding exploitation categories.

o Feature Fusion: The PEM matrix is combined with non-permission static features

for a multi-modal input vector.

o Normalization: All features are scaled using Min-Max normalization for

compatibility with distance- and tree-based algorithms.

o Train-Test Split: The dataset is split in an 80:20 stratified manner, ensuring

balanced representation of malware and benign samples in both sets

8 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

Table 1: Mapping of Malware Techniques to Android Permissions

Malware Technique Android Permissions

Remote Command Execution

INTERNET, BIND DEVICE ADMIN, PROCESS OUTGOING CALLS,

READ SMS, SEND SMS, READ CALL LOG, READ LOGS, RECORD

AUDIO, CAMERA, MODIFY PHONE STATE, WRITE EXTERNAL

STORAGE

Rootkit Installation

INTERNET, BIND DEVICE ADMIN, READ EXTERNAL STORAGE,

WRITE EXTERNAL STORAGE, READ LOGS, MODIFY PHONE

STATE, RECORD AUDIO, CAMERA, SYSTEM OVERLAY WINDOW,

ACCESS SUPERUSER

Exploit Delivery
INTERNET, WRITE EXTERNAL STORAGE, READ EXTERNAL

STORAGE, INSTALL PACKAGES, REQUEST INSTALL PACKAGES

Data Exfiltration
INTERNET, READ EXTERNAL STORAGE, WRITE EXTERNAL

STORAGE, ACCESS NETWORK STATE

Credential Theft

INTERNET, READ EXTERNAL STORAGE, WRITE EXTERNAL

STORAGE, RECORD AUDIO, CAMERA, READ CONTACTS, GET

ACCOUNTS

Screen Logging
INTERNET, READ EXTERNAL STORAGE, WRITE EXTERNAL

STORAGE, RECORD AUDIO, CAMERA

Keylogging

INTERNET, READ EXTERNAL STORAGE, WRITE EXTERNAL

STORAGE, RECORD AUDIO, CAMERA, READ LOGS, READ SMS,

RECEIVE SMS, READ CONTACTS

Audio Surveillance
RECORD AUDIO, INTERNET, READ EXTERNAL STORAGE, WRITE

EXTERNAL STORAGE

Social Engineering Attack
READ CONTACTS, SEND SMS, READ SMS, RECEIVE SMS, WRITE

EXTERNAL STORAGE

GPS Spoofing ACCESS ASSISTED GPS, ACCESS GPS

Device Bricking DEVICE POWER

Call Interception
READ PHONE STATE, READ CALL LOG, PROCESS OUTGOING

CALLS

Network Traffic Interception
INTERNET, ACCESS NETWORK STATE, CHANGE NETWORK

STATE

Device Lockout MODIFY PHONE STATE, WRITE SECURE SETTINGS, SHUTDOWN

Browser Hijacking
INTERNET, WRITE HISTORY BOOKMARKS, WRITE SECURE

SETTINGS

System Settings Modification
WRITE SETTINGS, WRITE SECURE SETTINGS, CHANGE

CONFIGURATION

File System Manipulation
READ EXTERNAL STORAGE, WRITE EXTERNAL STORAGE,

ACCESS CACHE FILESYSTEM, WRITE INTERNAL STORAGE

Camera Hijacking CAMERA, RECORD AUDIO, RECORD VIDEO

App Installation without User INSTALL PACKAGES, REQUEST INSTALL PACKAGES, INSTALL

GENDroid: A Optimized Hybrid Android Malware Detection Framework via Multimodal

Feature Fusion and Genetic Algorithm

9

Consent SHORTCUT, DOWNLOAD WITHOUT NOTIFICATION

Location Tracking ACCESS LOCATION

Contact Information Theft READ CONTACTS, WRITE CONTACTS

Browser History Theft READ HISTORY BOOKMARKS, ACCESS DOWNLOAD MANAGER

System Settings Modification
WRITE SETTINGS, WRITE SECURE SETTINGS, CHANGE

CONFIGURATION

Task Manipulation REORDER TASKS, GET TASKS

Bluetooth Hijacking BLUETOOTH, BLUETOOTH ADMIN

WiFi Network Hijacking ACCESS WIFI STATE, CHANGE WIFI STATE

USB Debugging Exploitation WRITE SECURE SETTINGS

Screen Overlay Attack SYSTEM ALERT WINDOW

Sim Card Manipulation READ PHONE STATE, WRITE SETTINGS

Ad Fraud ACCESS NETWORK STATE, INTERNET

Account Information Theft
GET ACCOUNTS, MANAGE ACCOUNTS, AUTHENTICATE

ACCOUNTS

Certificate Manipulation READ EXTERNAL STORAGE

Runtime Environment

Manipulation
MODIFY AUDIO SETTINGS

Source: Author’s own

3.2 Genetic algorithm-based optimization

 The GENDroid framework integrates a Genetic Algorithm (GA) to perform dual-

level optimization, addressing both feature selection and classifier hyperparameter tuning.

This evolutionary approach enhances the performance of malware detection by

systematically exploring the solution space for the most discriminative features and optimal

model configurations. Traditional static feature selection techniques often struggle with

high-dimensional Android malware datasets, where irrelevant or redundant features can

degrade classifier performance. Similarly, manually tuning hyperparameters for ensemble

classifiers like Random Forest or MLP is computationally expensive and suboptimal. GAs

offers a biologically-inspired mechanism capable of navigating complex, nonlinear search

spaces, making them ideal for this dual optimization task.it involves different steps which

are as follows:

• Chromosome Representation: In GENDroid, each chromosome encodes: A binary

feature mask representing whether a specific feature is selected (1) or not (0). Discrete

values for the hyperparameters of the Random Forest classifier, specifically:

o n-estimators: Number of decision trees

o max-depth: Depth of individual trees

 This hybrid representation allows the GA to evolve both the feature subset and

the classifier’s configuration simultaneously.

10 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

• Fitness Evaluation: The fitness function evaluates each chromosome based on the F1-

Score achieved by a Random Forest classifier using the encoded feature subset and

hyperparameters. The fitness score balances precision and recall, making it suitable for

imbalanced malware detection datasets.

• Genetic Operators: the following operators are used for the genetic algorithm process.

o Selection: Tournament selection is employed to retain high-fitness individuals.

o Crossover: Two-point crossover enables exchange of feature and hyperparameter

genes between parent chromosomes.

o Mutation: Bit-flip mutation is applied to the feature mask, and random re-sampling

is used for hyperparameters with a predefined mutation probability.

• Evolutionary Process: The GA is executed over multiple generations (e.g., 10–30) with

a defined population size (e.g., 20). During each generation:

o The current population is evaluated using the fitness function.

o Offspring are generated through crossover and mutation.

o The next generation is formed by selecting the fittest individuals.

 This process gradually converges towards a feature subset and hyperparameter set

that yields high malware classification performance and the best chromosome (solution) is

selected.

3.3 Ensemble-based classification

 The final stage of the GENDroid malware detection framework involves training an

ensemble of machine learning classifiers on the optimized feature subset produced by the

Genetic Algorithm. This multi-model architecture enhances detection accuracy and

resilience by leveraging the diverse decision-making capabilities of each individual model.

• Role of the Ensemble in GENDroid: The rationale for using an ensemble of classifiers

is grounded in the principle of classifier diversity—different models learn different

patterns and biases from the data. By combining their outputs, GENDroid can generalize

better across a wide range of malware behaviors, making the detection system more

robust against obfuscation and zero-day threats.

• Classifiers Used in GENDroid: Each classifier in the ensemble has been carefully

selected for its unique strengths and complementary behavior:

o Random Forest (RF): This classifier is a bagging ensemble of decision trees. It

operates by training multiple trees on different bootstrap samples of the training

data and aggregating their predictions. In GENDroid, RF benefits from the

hyperparameter tuning performed by the GA, including optimal selection of n-

estimators and max-depth. RF is leveraged for its strong ability to handle high-

dimensional feature spaces and interpret feature importance. It forms the backbone

of the ensemble due to its high standalone accuracy and resistance to overfitting.

GENDroid: A Optimized Hybrid Android Malware Detection Framework via Multimodal

Feature Fusion and Genetic Algorithm

11

o Multi-Layer Perceptron (MLP): MLP is a feed forward neural network that includes

one or more hidden layers with nonlinear activation functions. It learns complex,

non-linear mappings between input features and output labels. The MLP captures

deep correlations between permission semantics, API usage, and other metadata. Its

strength lies in modeling complex malware signatures that linear models may

overlook.

o Gaussian Naive Bayes (NB): NB is a simple probabilistic model based on Bayes’

theorem with the assumption of feature independence. Despite this assumption, it is

highly effective and efficient for text-like or sparse datasets. NB adds diversity to

the ensemble. It is particularly useful when permissions or APIs appear

independently or in rare combinations. Its lightweight nature ensures fast inference.

o Passive Aggressive Classifier (PA): PA is an online learning model that updates its

decision boundary incrementally as it sees new batches of data. It is ideal for

dynamic environments where new malware families continuously emerge. PA

introduces incremental learning capability to the system. It supports continuous

adaptation by learning from streaming or chunked data batches. This makes

GENDroid scalable and suited for real-time detection scenarios.

• Classifier Training Process: Once the Genetic Algorithm has selected the best feature

subset and hyper-parameter configurations, each classifier is trained on the optimized

data:

o The RF, MLP, and NB classifiers are trained using the entire training set.

o The PA classifier is trained incrementally using mini-batches of the training set.

This simulates real-world deployment where new apps are analyzed in small groups

over time.

 All classifiers share the same feature subset, ensuring consistency in learning

patterns across the models. Their diversity arises from differences in model architecture,

training objectives, and decision boundaries.

• Decision Aggregation through Voting: After training, GENDroid employs a majority

voting mechanism to aggregate predictions from the ensemble. Each classifier outputs a

label (benign or malicious), and the majority class is assigned as the final prediction.

This strategy ensures:

o Consensus-driven decision-making

o Reduced classifier-specific bias

o Improved resilience against noisy or adversarial inputs

 By adopting this ensemble strategy, GENDroid balances accuracy, speed, and

robustness, making it effective for deployment in diverse Android malware detection

environments.

12 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

4.0 Result and Discussion

 In this section, we analyze the experimental outcomes of the proposed GENDroid

framework, which aims to detect Android malware using multi-modal static features and

evolutionary optimization. GENDroid incorporates feature fusion from permissions, API

calls, and intents, along with genetic algorithm-based feature selection and classifier

hyperparameter tuning. The performance of individual classifiers—including Random

Forest (RF), Multi-Layer Perceptron (MLP), Naive Bayes (NB), and Passive Aggressive

(PA)—is evaluated and compared with the ensemble classification strategy that combines

their predictions through majority voting. The results demonstrate how GENDroid

effectively reduces feature dimensionality, increases classification accuracy, and ensures

generalizability. The integration of incremental learning through the PA classifier enhances

adaptability to streaming or large-scale datasets, further improving the scalability of the

model. The experimental findings are presented using performance metrics such as

Accuracy, Precision, Recall, F1 Score, and AUC, and supported with various

visualizations including ROC curves, fitness evolution plots, and feature importance graphs.

4.1 Experimental setup

 The experiments for evaluating the GENDroid framework were conducted on a 64-

bit Windows 11 Home (version 23H2) system powered by an AMD Ryzen 7 7730U

processor with Radeon Graphics, running at 2.00 GHz. The model development and

analysis were performed using Python 3.11 in a Jupyter Notebook environment, with Java

version 21 employed for auxiliary tasks related to Android package (APK) processing and

static analysis when necessary.

4.2 Libraries Used

 The GENDroid framework was fully implemented in Python, leveraging a robust

set of libraries and tools:

• Scikit-learn: Used for implementing core classifiers including Random Forest, MLP,

Naive Bayes, and Passive Aggressive models, as well as for computing standard

evaluation metrics such as Accuracy, Precision, Recall, F1 Score, and AUC.

• DEAP (Distributed Evolutionary Algorithms in Python): Employed to design and

execute the Genetic Algorithm for optimizing feature selection and tuning classifier

hyperparameters.

• Matplotlib and Seaborn: Utilized to generate comprehensive visualizations such as

ROC curves, fit- ness distributions, feature importance rankings, and performance

comparisons.

GENDroid: A Optimized Hybrid Android Malware Detection Framework via Multimodal

Feature Fusion and Genetic Algorithm

13

4.3 Performance metrics

 To comprehensively evaluate the classification performance of the GENDroid

framework, we utilized the following standard metrics, which are widely accepted in

machine learning for binary classification problems. These metrics provide insight into

different aspects of the model’s effectiveness, especially in the context of imbalanced

datasets like Android malware detection.

• Accuracy: Accuracy measures the overall correctness of the classifier by calculating the

proportion of correctly classified samples among all predictions.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

• Precision: Precision reflects the model’s ability to correctly label malware instances

without misclassifying benign apps. It is the ratio of correctly predicted malware (true

positives) to all predicted malware samples.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

• Recall (Sensitivity or True Positive Rate): Recall indicates the model’s capability to

identify all actual malware instances. It is the ratio of true positives to all actual

positive (malicious) samples.

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

• F1 Score: The F1 Score is the harmonic mean of Precision and Recall. It balances

the trade-off between the two metrics, particularly useful when the class distribution is

skewed.

 𝐹1 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙𝑅𝑒𝑎𝑐𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙

• The AUC represents the probability that the classifier will rank a randomly chosen

positive instance higher than a randomly chosen negative one. A higher AUC value

indicates better model discrimination across various threshold settings.

 AUC = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅) 𝑑𝐹𝑃𝑅
1

0

4.4 Model performance

 The performance of the proposed GENDroid framework was evaluated through

extensive experiments using the Drebin dataset. The framework integrates multi-modal

feature fusion, Genetic Algorithm (GA)-based optimization, and ensemble learning,

resulting in high classification performance for Android malware detection. Table 2 Shows

the performance metrics for the proposed model.

14 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

Table 2: Performance Metrics for the Proposed Model

Metric Value

Accuracy 98.62%

Precision 98.66%

Recall 99.55%

F1 Score 99.10%

AUC 99%

Source: Author’s own

4.5 Analysis of visual results

 Figure 2 shows the distribution of F1 scores across generations in the Genetic

Algorithm. In early generations, we observe wide variability, reflecting random initial

populations. However, starting from generation 5 onward, fitness values begin to stabilize

and converge. This indicates the GA successfully evolves toward optimal solutions,

selecting the most discriminative feature subsets and best hyperparameter combinations.

Figure 2: Fitness Distribution Across Generations

Source: Author’s own

GENDroid: A Optimized Hybrid Android Malware Detection Framework via Multimodal

Feature Fusion and Genetic Algorithm

15

 Figure 3 highlights the impact of genetic optimization. The initial classification

model (without GA) yielded approximately 85% accuracy. After applying the Genetic

Algorithm for both feature selection and hyperparameter tuning, accuracy increased

significantly to 98.62%. This stark improvement validates the utility of evolutionary search

in enhancing performance.

Figure 3: Accuracy

 Source: Author’s own

Figure 4: F1 Score Comparison

 Source: Author’s own

16 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

 Figure 4 compares the F1 score for each classifier in the ensemble. Both RF and

MLP perform exceptionally well individually (F1 0.99), whereas NB and PA, although

relatively weaker, still contribute valuable perspectives in ensemble voting. The ensemble

model achieves the highest F1 score, proving the effectiveness of classifier fusion.

 Figure 5 presents the ROC curves for all individual classifiers and the ensemble. The

ensemble classifier, RF, and MLP all achieved an AUC of approximately 0.98–0.99,

indicating a strong ability to distinguish between benign and malicious apps.

Figure 5: ROC Curve

Source: Author’s own

 Figure 6 displays the top 10 most influential features as determined by the

Random Forest classifier. Feature F26 was the most dominant, contributing over 15% to

the classification decision. This analysis provides interpretability to the model, helping

security analysts understand which permissions or APIs are most often linked to malware

behavior.

GENDroid: A Optimized Hybrid Android Malware Detection Framework via Multimodal

Feature Fusion and Genetic Algorithm

17

Figure 6: Feature Importance Analysis

Source: Author’s own

 Figure 7 illustrates confusion matrices for each classifier. The ensemble model

demonstrates superior performance with only 20 misclassifications out of 1,451 instances.

PA, RF, and MLP also exhibit low false positives and false negatives. NB has significantly

more false positives, confirming its lower reliability. The ensemble classifier’s minimal error

rate affirms its capacity to balance precision and recall across imbalanced datasets.

Figure 7: Confusion Matrices

18 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

Source: Author’s own

 Figure 8 depicts the class distribution of the test set, which is moderately imbalanced,

with benign samples comprising 76.6% and malware samples 23.4%. This imbalance

necessitates models that maintain high recall to ensure malware instances are not

overlooked. The high recall scores achieved by GENDroid suggest robustness against class

imbalance. capacity to balance precision and recall across imbalanced datasets.

 Figure 9 evaluates the performance of the Passive Aggressive (PA) classifier in

incremental learning. Accuracy fluctuates across batches due to data variance but

consistently remains above 92%, peaking at 94.6%. This supports the suitability of PA for

real-time malware detection in dynamic Android environments where data arrives in

streams.

GENDroid: A Optimized Hybrid Android Malware Detection Framework via Multimodal

Feature Fusion and Genetic Algorithm

19

Figure 8: Class Distribution in Test Set

Source: Author’s own

Figure 9: Batch-wise Accuracy

Source: Author’s own

4.6 Comparative analysis

 To evaluate the effectiveness of the proposed GENDroid framework, we conducted

a comparative analysis with several state-of-the-art Android malware detection techniques

20 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

reported in the literature. Table 3 summarizes the performance of different models across

key evaluation metrics, namely Accuracy, Precision, Recall, and F1-Score. GENDroid

demonstrates superior performance across most metrics. Specifically, it achieves an

accuracy of 98.62%, which is competitive with or exceeds the accuracy reported in existing

models. In terms of precision (98.66%), GENDroid effectively minimizes false positives,

ensuring that benign apps are rarely misclassified as malicious. This is crucial in real-world

scenarios to maintain user trust and avoid unnecessary restrictions.

 The recall score of 99.55% highlights GENDroid’s high sensitivity in correctly

identifying malicious applications, significantly outperforming traditional classifiers like

Naive Bayes and certain heuristic-based techniques. This ability to accurately capture the

majority of mal- ware cases makes GENDroid highly reliable in threat detection.

 While methods such as Almarshad et al. (2023) and Liu et al. (2024) achieved

high precision (0.989 and 0.9931 respectively), they operated on relatively smaller or im-

balanced datasets. Their recall and F1 scores were also lower compared to GENDroid. The

F1-score of 99.10%, which balances both precision and recall, reflects the robustness of the

model across imbalanced datasets. Compared to techniques such as those by Alani & Awad

(2022) and Liu et al. (2024), which show strong individual metrics, GENDroid provides a

consistently high score across all evaluation parameters due to its hybrid design

incorporating genetic optimization and multi-modal static feature fusion.

 Moreover, the ensemble strategy adopted in GEN- Droid—leveraging the strengths

of classifiers such as Random Forest, MLP, Naive Bayes, and Passive Aggressive—proves

beneficial in generalizing across diverse malware behaviors. By optimizing both feature

selection and hyperparameters through a genetic algorithm, the model adapts well to

varying input structures without significant performance degradation.

Table 3: Performance Comparison of Android Malware Detection Techniques

Technique Accuracy Precision Recall F1 Score

Wajahat et al. (2024) 0.9790 0.982 0.976 0.979

Almarshad et al. (2023) 0.9940 0.989 0.988 0.987

Alani & Awad (2022) 0.9798 0.981 0.9759 0.9783

Mehtab et al. (2020) 0.9911 0.9933 0.9936 0.9934

Mahindru & Sangal (2021) 0.9828 0.9961 0.9773 0.9866

Liu et al. (2024) 0.9807 0.9931 0.9812 0.9871

GENDroid (Proposed) 0.9862 0.9866 0.9955 0.9910

Source: Author’s own

GENDroid: A Optimized Hybrid Android Malware Detection Framework via Multimodal

Feature Fusion and Genetic Algorithm

21

 In summary, GENDroid’s comprehensive approach to malware detection

significantly improves detection performance and offers a scalable, interpretable, and

adaptive framework suitable for practical deployment in the Android ecosystem.

5.0 Conclusion

 In this study, we proposed GENDroid, a robust and scalable Android malware

detection framework that integrates multi-modal static features and evolutionary

optimization techniques. Unlike traditional models that rely on isolated permission features

or singular classification approaches, GENDroid harnesses a rich fusion of permissions,

API calls, and intents—mapped through a Permission-to-Exploitation Mapping (PEM)

strategy—to derive deeper semantic insights into application behaviors.

 A genetic algorithm was employed not only for optimal feature subset selection but

also for fine-tuning classifier hyperparameters, ensuring that the final ensemble model is

both lightweight and high-performing. The ensemble comprises diverse classifiers including

Random Forest, MLP, Naive Bayes, and Passive Aggressive, providing robustness and

adaptability in detecting various malware types.

 Extensive experiments on the Drebin dataset demonstrated that GENDroid

outperforms several state-of-the-art techniques, achieving an accuracy of 98.62%, precision

of 98.66%, recall of 99.55%, and an F1-score of 99.10%. These results validate the

effectiveness of the proposed multi-modal optimization-driven approach in enhancing

malware detection performance, especially in terms of recall and generalization. The

modular and extensible nature of GENDroid makes it suitable for integration into real-

world Android security ecosystems. Future directions include extending the framework to

incorporate dynamic analysis features, building real-time detection capabilities, and

introducing malware risk scoring systems for finer-grained security assessment.

6.0 Future Scope

 The GENDroid framework has proven effective in static Android malware

detection by leveraging multi-modal feature integration and genetic algorithm-driven

optimization. However, to further elevate its practical utility and research value, several

future enhancements can be considered: While GENDroid currently focuses on static

features such as permissions, intents, and API calls, the addition of dynamic analysis—

monitoring run- time behavior such as system calls, file access, network usage, and memory

footprints—can substantially in- crease detection accuracy, particularly against obfuscated

and polymorphic malware. A hybrid model would offer greater insight into behaviorally

22 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

stealthy malware. In real- world applications, security professionals often require not just

detection, but risk assessment. GENDroid can be extended to assign risk scores to each app

based on the type and criticality of detected behaviors or permissions. This would enable

prioritized threat response.

References

Ahmad, A., Shahid, Y., Mehmood, A., Abbas, M., & Imran, M. (2021). PermGuard:

Fine-grained exploitation technique mapping for Android malware detection. In

Proceedings: IEEE International Conference on Communication (ICC 2021), pp. 1–6.

Alani, M. M. & Awad, A. I. (2022). PAIRED: An explainable lightweight Android

malware detection system. IEEE Access, 10, 73214–73228. Retrieved from https://doi.org

/10.1109/ACCESS.2022.3189645

Alkahtani, H. & Aldhyani, T. H. H. (2022). Artificial intelligence algorithms for malware

detection in Android-operated mobile devices. Sensors, 22(6), 2268. Retrieved from

https://doi.org/10.3390/s22062268

Almarshad, F. A., Zakariah, M., Gashgari, G. A., Aldakheel, E. A. & Alzahrani, A. I. A.

(2023). Detection of Android malware using machine learning and Siamese shot learning

technique for security. IEEE Access, 11, 127697–127714. Retrieved from https://doi.org/

10.1109/ACCESS.2023.3331739

Gupta, R., Sharma, K. & Garg, R. K. (2024). Innovative approach to Android malware

detection: Prioritizing critical features using rough set theory. Electronics, 13(3), 482.

Retrieved from https://doi.org/10.3390/electronics13030482

Liu, Z., Wang, R., Japkowicz, N., Gomes, H. M., Peng, B. & Zhang, W. (2024).

SeGDroid: An Android malware detection method based on sensitive function call graph

learning. Expert Systems with Applications, 235, 121125. Retrieved from https://doi.org/

10.1016/j.eswa.2023.121125

Mahindru, A. & Sangal, A. L. (2021). MLDroid—framework for Android malware

detection using machine learning techniques. Neural Computing and Application, 33(10),

5183–5240. Retrieved from https://doi.org/10.1007/s00521-020-05309-4

GENDroid: A Optimized Hybrid Android Malware Detection Framework via Multimodal

Feature Fusion and Genetic Algorithm

23

Mehtab, A., Shahid, W. B., Yaqoob, T., Amjad, M. F., Abbas, H., Afzal, H. & Saqib, M. N.

(2020). AdDroid: Rule-based machine learning frame- work for Android malware analysis.

Mobile Network and Applications, 25(1), 180–192. Retrieved from https://doi.org/ 10.1007/

s11036-019-01248-0

Odat, E. & Yaseen, Q. M. (2023). A novel machine learning approach for Android malware

detection based on the co-existence of features. IEEE Access, 11, 15471–15484. Retrieved

from https://doi.org/10.1109/ACCESS.2023.3244656

Surendran, R., Thomas, T. & Emmanuel, S. (2020). GSDroid: Graph signal based compact

feature representation for Android malware detection. Expert Systems with Applications,

159, 113581. Retrieved from https://doi.org/10.1016/j.eswa.2020.113581

Vu, L. N. & Jung, S. (2021). AdMat: A CNN-on-matrix approach to Android malware

detection and classification. IEEE Access, 9, 39680–39694. Retrieved from https://doi.org/

10.1109/ACCESS.2021.3063748

Wajahat, A., He, J., Zhu, N., Mahmood, T., Nazir, A., Ullah, F., Qureshi, S. & Dev, S.

(2024). Securing Android IoT devices with GuardDroid transparent and lightweight

malware detection. Ain Shams Engineering Journal, 15(5), 102642. Retrieved from

https://doi.org/10.1016/j.asej.2024.102642

