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ABSTRACT 

 

The rapid growth of Android applications has been accompanied by a surge in malicious apps 

that exploit system permissions and static components to bypass conventional security defenses. 

While static analysis has proven useful for early malware detection, many existing approaches 

fall short due to limited feature representation and a lack of adaptability to evolving threats. 

This paper introduces GENDroid, a novel framework that enhances Android malware detection 

by combining multi-modal static feature fusion with evolutionary optimization. GENDroid 

integrates diverse features—including permissions, API calls, and intent filters—into a unified 

representation, enabling a deeper understanding of application behavior. To optimize both 

feature selection and classifier performance, a Genetic Algorithm (GA)-driven strategy is 

employed, allowing the system to evolve and adapt automatically. The optimized feature set is 

used to train an ensemble of machine learning classifiers on a comprehensive dataset 

comprising both real-world and synthetic Android applications. Experimental results 

demonstrate that GENDroid delivers high detection accuracy, significantly reduces false 

positives, and remains robust against adversarial variants. Its modular design also allows for 

the seamless integration of additional static or behavioral features. By intelligently combining 

feature diversity with adaptive learning, GENDroid provides a practical and scalable solution 

for Android malware detection, effectively addressing the limitations of traditional static 

analysis techniques. 
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Permission-to-Exploitation Mapping; Genetic Algorithms; Feature Selection; Machine 

Learning; Ensemble Learning; Adversarial Robustness; APK Analysis. 

 

1.0 Introduction 
 

 The widespread use of Android-powered products has significantly altered the 

mobile ecosystem, allowing millions of applications to deliver a wide range of features to 

users around the world.  
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 Since Android dominates the global market for mobile operating systems, hackers 

have found it to be a profitable target due to its open source nature, adaptability, and wide 

use. Serious security and privacy issues have been raised by the increase in malicious programs 

for Android, which have an effect on both individual users and business systems. 

 

1.1 Background and motivation 

 Conventional malware detection methods, such run-time behavior analysis and 

signature-based scanning, frequently find it difficult to stay up with the quickly changing 

threat ecosystem. Signature-based methods are useless against obfuscated versions and 

zero-day attacks since they require prior knowledge of malware patterns. However, because 

they depend on runtime execution and monitoring settings, dynamic analysis techniques—

while effective—tend to be resource-intensive and less scalable. In order to get over these 

restrictions, this study suggests GENDroid, a fresh static malware detection framework that 

incorporates two significant breakthroughs. In order to provide a more comprehensive 

semantic representation of Android apps, it first makes use of multi-modal feature fusion, 

which combines permissions, API call patterns, and intent filters. Second, it uses Genetic 

Algorithms (GAs) to optimize the classifier and perform automatic feature selection. This 

enables the system to adapt dynamically and sustain high detection performance as threat 

patterns change. GENDroid provides a scalable, intelligent, and reliable method for 

detecting Android malware thanks to these improvements. 

 

1.2 Security gaps 

 The open-source nature of the Android operating system has contributed 

significantly to its widespread adoption by enabling a large and diverse developer 

community to build a wide range of applications. This flexibility allows device 

manufacturers and software developers to customize the platform, offering tailored user 

experiences and innovative features that further fuel its popularity. However, the same 

openness that fosters innovation also introduces critical security concerns. Since the source 

code is publicly accessible, malicious actors can analyze it to identify vulnerabilities and 

craft sophisticated exploits. Moreover, Android’s support for third-party application 

marketplaces—many of which lack rigorous security vetting—provides an additional vector 

for the distribution of malicious software. 

 

1.3 Objective 

 This work presents the design and implementation of a scalable and modular 

malware detection framework for Android, with the following core objectives:  
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• To develop a static analysis-based detection system that combines diverse sources of 

information extracted from Android application packages (APKs), such as manifest 

declarations and code-level components.  

• To improve the semantic richness of extracted features by incorporating a structured 

mapping between static indicators and potential exploitation behaviors.  

• To apply Genetic Algorithms (GAs) for: Automatic selection of the most discriminative 

feature subsets Hyperparameter tuning of classifiers to maximize detection accuracy.  

• To construct an optimized ensemble of machine learning models capable of robust 

malware identification across varied samples.  

•  To evaluate the framework’s effectiveness using real-world and adversarial datasets, 

employing multiple performance metrics including accuracy, precision, recall, F1-

score, and AUC.  

 The proposed framework is designed to operate exclusively through static analysis, 

without requiring code execution or runtime instrumentation. The detection pipeline 

functions offline and consists of APK decompilation, feature extraction, evolutionary 

optimization, and supervised classification. While dynamic analysis and real-time 

deployment are outside the scope of this study, the architecture has been intentionally built 

with modularity in mind—facilitating future integration of dynamic features or behavioral 

models as extensions. 

 

2.0 Related Work 

 

 The exponential growth of Android applications has made mobile platforms 

increasingly vulnerable to malware attacks. With the Android operating system accounting 

for a significant share of the global mobile market, adversaries continue to exploit its open-

source architecture, app distribution model, and user permission system. In response, the 

research community has developed a wide range of Android malware detection 

frameworks, primarily categorized as static, dynamic, and hybrid approaches. This chapter 

presents a detailed review of recent studies in static malware detection, the role of 

machine learning, multi-feature analysis, and optimization strategies that inform the design 

of the proposed GENDroid framework. 

 Wajahat et al. (2024) demonstrated that selecting a subset of meaningful 

permissions using Recursive Feature Elimination (RFE) and SHAP values significantly 

improved detection accuracy while reducing feature space, achieving an F1-score above 

0.99. Gupta et al. (2024) leveraged rough set theory to eliminate redundant permission 

features and prioritize those most indicative of malicious behavior. Odat & Yaseen (2023) 

constructed a co-occurrence matrix of permissions and API calls and utilized FP-growth 
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algorithms to identify strong feature associations. Their method achieved a detection rate of 

98%, outperforming permission-only models. Mahindru & Sangal (2021), through 

MLDroid, used a combination of APIs, app metadata, and permissions. Their results 

confirmed that integrating diverse feature types with ensemble classifiers like Random 

Forest and Gradient Boosted Trees outperformed models trained on single-feature sets. 

 Vu & Jung (2021) developed AdMat, a model that represents Android app features 

as adjacency matrices and feeds them into a Convolutional Neural Network (CNN). Their 

model achieved a high detection rate of 98.26%, demonstrating robustness even with 

smaller training datasets. Surendran et al. (2020) employed graph signal processing on 

system call graphs. By using only 16-dimensional feature vectors and training with Random 

Forests and Decision Trees, the model achieved 99% accuracy while maintaining low 

computational overhead. 

 Liu et al. (2024) proposed SeGDroid, which constructs sensitive function call 

graphs from decompiled apps. By pruning irrelevant edges and nodes, they enhanced both 

malware detection (98). Mehtab et al. (2020) presented AdDroid, a rule-based engine using 

a handcrafted feature set and an Adaboost-based ensemble classifier. The system reached 

99.11. Almarshad et al. (2023) addressed the data scarcity problem using a Siamese 

network for few-shot learning. By coupling this with conventional classifiers, they achieved 

98.9% accuracy on the Drebin dataset, illustrating its applicability in low-data scenarios. 

 Alani & Awad (2022) introduced PAIRED, a framework that combined SHAP 

values and recursive elimination to identify the most impactful permission features. The 

model achieved accuracy above 98% using tree-based ensemble classifiers. 

 Alkahtani & Aldhyani (2022) employed correlation-based feature filtering followed 

by classification using SVM, LSTM, and CNN-LSTM models. Remarkably, their SVM 

model attained 100% accuracy on the CI-CAndMal2017 dataset, while deep learning 

models surpassed 98%, underscoring the importance of filtering and classifier alignment. 

Although prior research in Android malware detection has introduced a variety of machine 

learning-based approaches, several key limitations continue to hinder the effectiveness, 

adaptability, and scalability of these systems. The following challenges, observed across 

state-of-the-art studies, motivate the need for a more robust solution: 

• Limited Dataset Scale and Currency: Many studies rely on small or outdated datasets, 

which can reduce the generalizability and real-world relevance of their models. This 

hinders the system’s ability to detect newly emerging or mutated malware variants. 

• Inefficient Feature Representation: Several approaches either underutilize key static 

attributes or fail to apply intelligent feature reduction, resulting in unnecessarily large 

feature spaces that may include redundant or irrelevant dimensions. 
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• Scalability Bottlenecks: The architectural design of many frameworks lacks support for 

modular expansion or efficient processing of large-scale datasets, which is critical given 

the continuous growth of Android applications in the wild. 

• Incremental Learning Capabilities: Most existing models are trained in a batch mode 

using classical machine learning methods, which require full retraining to incorporate 

new data. This leads to inefficiencies in model maintenance and delays in adapting to 

evolving threat landscapes. 

 

3.0 Proposed Methodology 

 

 With mobile applications deeply integrated into users’ lives, permissions are often 

granted without a clear understanding of their security implications. Malicious Android 

applications exploit these permissions to gain unauthorized access to sensitive data or 

functionalities, leading to severe privacy and security threats. To address this challenge, 

GENDroid presents a multi-modal, static-analysis-based malware detection framework. It 

integrates diverse static features—primarily permissions and app metadata—using a hybrid 

of semantic transformation and machine learning techniques. The framework enhances 

detection accuracy and interpretability by combining Permission-to-Exploitation Mapping 

(PEM) with Genetic Algorithm-based optimization and an ensemble of classifiers. 

• Input from the Drebin dataset, a benchmark labelled dataset of Android applications 

(both benign and malicious). 

• Extraction of static features, including permissions, API usage, and other manifest-level 

metadata. 

• Multi-modal feature transformation, where permission features are semantically 

mapped into high-level exploitation categories via the PEM dictionary, and combined 

with other static features. 

• Optimization via Genetic Algorithm, which selects the most relevant features and tunes 

hyperparameters (e.g., number of estimators, tree depth) for Random Forest. 

• Training of an ensemble of classifiers, including Random Forest (RF), Multi-Layer 

Perceptron (MLP), Naive Bayes (NB), and Passive Aggressive (PA); PA supports 

incremental learning for scalability. 

• Final malware classification through majority voting, based on consensus among the 

classifiers. 

• Evaluation of detection performance using metrics such as Accuracy, Precision, Recall, 

F1 Score, and AUC. 
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 By fusing multiple feature modalities and leveraging evolutionary learning, 

GENDroid achieves efficient, scalable, and interpretable Android malware detection. 

 Figure 1 illustrates the flow chart of the architecture of the GENDroid Malware 

Detection framework. 

 

Figure 1: Flow Chart of the GENDroid 

 

 
Source: Author’s own 

 

3.1 Dataset collection and overviews 

 A robust and reliable dataset is fundamental to the development and evaluation of 

any malware detection framework. For this purpose, the GENDroid framework utilizes the 

Drebin dataset, a publicly available and widely recognized Android malware dataset 

introduced by Arp et al. This dataset offers a comprehensive static analysis view of Android 

applications, encompassing a broad range of behavioral indicators, and serves as a standard 

benchmark in academic and industrial research. 

• Dataset Source and Composition: The Drebin dataset comprises 5,560 Android 

application samples, including 5,156 malicious apps, collected from multiple third-party 
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markets and verified using VirusTotal.404 benign apps, primarily sourced from the 

Google Play Store. Each application in the dataset has been statically analyzed to 

extract various features from its APK components (e.g., AndroidManifest.xml, DEX 

code). These features span multiple categories like PermissionsIntent, filtersAPI, 

callsNetwork, addressesHardware, componentsApp, components (activities, services, 

etc.) This extensive multi-source feature extraction results in a sparse binary feature 

matrix with over 123,000 unique feature keys, which represent the presence or absence 

of specific attributes in each app. 

• Multi-Modal Feature Representation in GENDroid: While the original Drebin dataset 

includes a large and heterogeneous feature space, GENDroid adopts a multi-modal static 

feature integration approach to construct a more semantically meaningful and compact 

representation. The following modalities are incorporated: Raw Permission Features: 

Direct binary indicators of Android permissions declared in the manifest file. Non-

Permission Static Features: Additional manifest-level metadata not categorized under 

permissions, such as services, actions, and receivers. These provide auxiliary signals 

about the app’s behavior. PEM-based Semantic Features: To enhance semantic 

interpretability, permissions are transformed using a Permission-to-Exploitation 

Mapping (PEM) dictionary. This dictionary clusters permissions into high-level 

behavioral exploitation categories as shown in Table 1. Table 1 presents the mapping of 

Android permissions to high-level malware exploitation techniques. This mapping is 

adapted and extended from the PermGuard framework permguard (Ahmad, 2021), 

which categorizes permissions based on common malicious behaviors observed in 

Android malware. Additional categories were included in our work by analyzing 

uncategorized features and associating them with relevant exploitation patterns using 

Android developer documentation and malware behavior reports. 

• Data Preprocessing Workflow: The preprocessing pipeline is as follows: 

o Label Encoding: Malware samples are labeled as 1, benign as 0. 

o Missing Value Handling: Any ambiguous values are imputed as zeros. 

o PEM Feature Engineering: A new PEM-transformed matrix is generated by 

mapping requested permissions to their corresponding exploitation categories. 

o Feature Fusion: The PEM matrix is combined with non-permission static features 

for a multi-modal input vector. 

o Normalization: All features are scaled using Min-Max normalization for 

compatibility with distance- and tree-based algorithms. 

o Train-Test Split: The dataset is split in an 80:20 stratified manner, ensuring 

balanced representation of malware and benign samples in both sets 
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Table 1: Mapping of Malware Techniques to Android Permissions 

 

Malware Technique Android Permissions 

Remote Command Execution 

INTERNET, BIND DEVICE ADMIN, PROCESS OUTGOING CALLS, 

READ SMS, SEND SMS, READ CALL LOG, READ LOGS, RECORD 

AUDIO, CAMERA, MODIFY PHONE STATE, WRITE EXTERNAL 

STORAGE 

Rootkit Installation 

INTERNET, BIND DEVICE ADMIN, READ EXTERNAL STORAGE, 

WRITE EXTERNAL STORAGE, READ LOGS, MODIFY PHONE 

STATE, RECORD AUDIO, CAMERA, SYSTEM OVERLAY WINDOW, 

ACCESS SUPERUSER 

Exploit Delivery 
INTERNET, WRITE EXTERNAL STORAGE, READ EXTERNAL 

STORAGE, INSTALL PACKAGES, REQUEST INSTALL PACKAGES 

Data Exfiltration 
INTERNET, READ EXTERNAL STORAGE, WRITE EXTERNAL 

STORAGE, ACCESS NETWORK STATE 

Credential Theft 

INTERNET, READ EXTERNAL STORAGE, WRITE EXTERNAL 

STORAGE, RECORD AUDIO, CAMERA, READ CONTACTS, GET 

ACCOUNTS 

Screen Logging 
INTERNET, READ EXTERNAL STORAGE, WRITE EXTERNAL 

STORAGE, RECORD AUDIO, CAMERA 

Keylogging 

INTERNET, READ EXTERNAL STORAGE, WRITE EXTERNAL 

STORAGE, RECORD AUDIO, CAMERA, READ LOGS, READ SMS, 

RECEIVE SMS, READ CONTACTS 

Audio Surveillance 
RECORD AUDIO, INTERNET, READ EXTERNAL STORAGE, WRITE 

EXTERNAL STORAGE 

Social Engineering Attack 
READ CONTACTS, SEND SMS, READ SMS, RECEIVE SMS, WRITE 

EXTERNAL STORAGE 

GPS Spoofing ACCESS ASSISTED GPS, ACCESS GPS 

Device Bricking DEVICE POWER 

Call Interception 
READ PHONE STATE, READ CALL LOG, PROCESS OUTGOING 

CALLS 

Network Traffic Interception 
INTERNET, ACCESS NETWORK STATE, CHANGE NETWORK 

STATE 

Device Lockout MODIFY PHONE STATE, WRITE SECURE SETTINGS, SHUTDOWN 

Browser Hijacking 
INTERNET, WRITE HISTORY BOOKMARKS, WRITE SECURE 

SETTINGS 

System Settings Modification 
WRITE SETTINGS, WRITE SECURE SETTINGS, CHANGE 

CONFIGURATION 

File System Manipulation 
READ EXTERNAL STORAGE, WRITE EXTERNAL STORAGE, 

ACCESS CACHE FILESYSTEM, WRITE INTERNAL STORAGE 

Camera Hijacking CAMERA, RECORD AUDIO, RECORD VIDEO 

App Installation without User INSTALL PACKAGES, REQUEST INSTALL PACKAGES, INSTALL 
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Consent SHORTCUT, DOWNLOAD WITHOUT NOTIFICATION 

Location Tracking ACCESS LOCATION 

Contact Information Theft READ CONTACTS, WRITE CONTACTS 

Browser History Theft READ HISTORY BOOKMARKS, ACCESS DOWNLOAD MANAGER 

System Settings Modification 
WRITE SETTINGS, WRITE SECURE SETTINGS, CHANGE 

CONFIGURATION 

Task Manipulation REORDER TASKS, GET TASKS 

Bluetooth Hijacking BLUETOOTH, BLUETOOTH ADMIN 

WiFi Network Hijacking ACCESS WIFI STATE, CHANGE WIFI STATE 

USB Debugging Exploitation WRITE SECURE SETTINGS 

Screen Overlay Attack SYSTEM ALERT WINDOW 

Sim Card Manipulation READ PHONE STATE, WRITE SETTINGS 

Ad Fraud ACCESS NETWORK STATE, INTERNET 

Account Information Theft 
GET ACCOUNTS, MANAGE ACCOUNTS, AUTHENTICATE 

ACCOUNTS 

Certificate Manipulation READ EXTERNAL STORAGE 

Runtime Environment 

Manipulation 
MODIFY AUDIO SETTINGS 

Source: Author’s own 

 

3.2 Genetic algorithm-based optimization 

 The GENDroid framework integrates a Genetic Algorithm (GA) to perform dual-

level optimization, addressing both feature selection and classifier hyperparameter tuning. 

This evolutionary approach enhances the performance of malware detection by 

systematically exploring the solution space for the most discriminative features and optimal 

model configurations. Traditional static feature selection techniques often struggle with 

high-dimensional Android malware datasets, where irrelevant or redundant features can 

degrade classifier performance. Similarly, manually tuning hyperparameters for ensemble 

classifiers like Random Forest or MLP is computationally expensive and suboptimal. GAs 

offers a biologically-inspired mechanism capable of navigating complex, nonlinear search 

spaces, making them ideal for this dual optimization task.it involves different steps which 

are as follows: 

• Chromosome Representation: In GENDroid, each chromosome encodes: A binary 

feature mask representing whether a specific feature is selected (1) or not (0). Discrete 

values for the hyperparameters of the Random Forest classifier, specifically: 

o n-estimators: Number of decision trees 

o max-depth: Depth of individual trees 

 This hybrid representation allows the GA to evolve both the feature subset and 

the classifier’s configuration simultaneously. 
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• Fitness Evaluation: The fitness function evaluates each chromosome based on the F1-

Score achieved by a Random Forest classifier using the encoded feature subset and 

hyperparameters. The fitness score balances precision and recall, making it suitable for 

imbalanced malware detection datasets. 

• Genetic Operators: the following operators are used for the genetic algorithm process. 

o Selection: Tournament selection is employed to retain high-fitness individuals. 

o Crossover: Two-point crossover enables exchange of feature and hyperparameter 

genes between parent chromosomes. 

o Mutation: Bit-flip mutation is applied to the feature mask, and random re-sampling 

is used for hyperparameters with a predefined mutation probability. 

• Evolutionary Process: The GA is executed over multiple generations (e.g., 10–30) with 

a defined population size (e.g., 20). During each generation: 

o The current population is evaluated using the fitness function. 

o Offspring are generated through crossover and mutation. 

o The next generation is formed by selecting the fittest individuals. 

 This process gradually converges towards a feature subset and hyperparameter set 

that yields high malware classification performance and the best chromosome (solution) is 

selected. 
 

3.3 Ensemble-based classification 

 The final stage of the GENDroid malware detection framework involves training an 

ensemble of machine learning classifiers on the optimized feature subset produced by the 

Genetic Algorithm. This multi-model architecture enhances detection accuracy and 

resilience by leveraging the diverse decision-making capabilities of each individual model. 

• Role of the Ensemble in GENDroid: The rationale for using an ensemble of classifiers 

is grounded in the principle of classifier diversity—different models learn different 

patterns and biases from the data. By combining their outputs, GENDroid can generalize 

better across a wide range of malware behaviors, making the detection system more 

robust against obfuscation and zero-day threats. 

• Classifiers Used in GENDroid: Each classifier in the ensemble has been carefully 

selected for its unique strengths and complementary behavior: 

o Random Forest (RF): This classifier is a bagging ensemble of decision trees. It 

operates by training multiple trees on different bootstrap samples of the training 

data and aggregating their predictions. In GENDroid, RF benefits from the 

hyperparameter tuning performed by the GA, including optimal selection of n-

estimators and max-depth. RF is leveraged for its strong ability to handle high-

dimensional feature spaces and interpret feature importance. It forms the backbone 

of the ensemble due to its high standalone accuracy and resistance to overfitting. 
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o Multi-Layer Perceptron (MLP): MLP is a feed forward neural network that includes 

one or more hidden layers with nonlinear activation functions. It learns complex, 

non-linear mappings between input features and output labels. The MLP captures 

deep correlations between permission semantics, API usage, and other metadata. Its 

strength lies in modeling complex malware signatures that linear models may 

overlook. 

o Gaussian Naive Bayes (NB): NB is a simple probabilistic model based on Bayes’ 

theorem with the assumption of feature independence. Despite this assumption, it is 

highly effective and efficient for text-like or sparse datasets. NB adds diversity to 

the ensemble. It is particularly useful when permissions or APIs appear 

independently or in rare combinations. Its lightweight nature ensures fast inference. 

o Passive Aggressive Classifier (PA): PA is an online learning model that updates its 

decision boundary incrementally as it sees new batches of data. It is ideal for 

dynamic environments where new malware families continuously emerge. PA 

introduces incremental learning capability to the system. It supports continuous 

adaptation by learning from streaming or chunked data batches. This makes 

GENDroid scalable and suited for real-time detection scenarios. 

• Classifier Training Process: Once the Genetic Algorithm has selected the best feature 

subset and hyper-parameter configurations, each classifier is trained on the optimized 

data: 

o The RF, MLP, and NB classifiers are trained using the entire training set. 

o The PA classifier is trained incrementally using mini-batches of the training set. 

This simulates real-world deployment where new apps are analyzed in small groups 

over time. 

 All classifiers share the same feature subset, ensuring consistency in learning 

patterns across the models. Their diversity arises from differences in model architecture, 

training objectives, and decision boundaries. 

• Decision Aggregation through Voting: After training, GENDroid employs a majority 

voting mechanism to aggregate predictions from the ensemble. Each classifier outputs a 

label (benign or malicious), and the majority class is assigned as the final prediction. 

This strategy ensures: 

o Consensus-driven decision-making 

o Reduced classifier-specific bias 

o Improved resilience against noisy or adversarial inputs 

 By adopting this ensemble strategy, GENDroid balances accuracy, speed, and 

robustness, making it effective for deployment in diverse Android malware detection 

environments. 



12 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,  

Volume 5, Issue 1, Jan-Jun 2025 

 
4.0 Result and Discussion 

 

 In this section, we analyze the experimental outcomes of the proposed GENDroid 

framework, which aims to detect Android malware using multi-modal static features and 

evolutionary optimization. GENDroid incorporates feature fusion from permissions, API 

calls, and intents, along with genetic algorithm-based feature selection and classifier 

hyperparameter tuning. The performance of individual classifiers—including Random 

Forest (RF), Multi-Layer Perceptron (MLP), Naive Bayes (NB), and Passive Aggressive 

(PA)—is evaluated and compared with the ensemble classification strategy that combines 

their predictions through majority voting. The results demonstrate how GENDroid 

effectively reduces feature dimensionality, increases classification accuracy, and ensures 

generalizability. The integration of incremental learning through the PA classifier enhances 

adaptability to streaming or large-scale datasets, further improving the scalability of the 

model. The experimental findings are presented using performance metrics such as 

Accuracy, Precision, Recall, F1 Score, and AUC, and supported with various 

visualizations including ROC curves, fitness evolution plots, and feature importance graphs. 

 

4.1 Experimental setup 

 The experiments for evaluating the GENDroid framework were conducted on a 64-

bit Windows 11 Home (version 23H2) system powered by an AMD Ryzen 7 7730U 

processor with Radeon Graphics, running at 2.00 GHz. The model development and 

analysis were performed using Python 3.11 in a Jupyter Notebook environment, with Java 

version 21 employed for auxiliary tasks related to Android package (APK) processing and 

static analysis when necessary. 

 

4.2 Libraries Used 

 The GENDroid framework was fully implemented in Python, leveraging a robust 

set of libraries and tools: 

• Scikit-learn: Used for implementing core classifiers including Random Forest, MLP, 

Naive Bayes, and Passive Aggressive models, as well as for computing standard 

evaluation metrics such as Accuracy, Precision, Recall, F1 Score, and AUC. 

• DEAP (Distributed Evolutionary Algorithms in Python): Employed to design and 

execute the Genetic Algorithm for optimizing feature selection and tuning classifier 

hyperparameters. 

• Matplotlib and Seaborn: Utilized to generate comprehensive visualizations such as 

ROC curves, fit- ness distributions, feature importance rankings, and performance 

comparisons. 
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4.3 Performance metrics 

 To comprehensively evaluate the classification performance of the GENDroid 

framework, we utilized the following standard metrics, which are widely accepted in 

machine learning for binary classification problems. These metrics provide insight into 

different aspects of the model’s effectiveness, especially in the context of imbalanced 

datasets like Android malware detection. 

• Accuracy: Accuracy measures the overall correctness of the classifier by calculating the 

proportion of correctly classified samples among all predictions. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

• Precision: Precision reflects the model’s ability to correctly label malware instances 

without misclassifying benign apps. It is the ratio of correctly predicted malware (true 

positives) to all predicted malware samples. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 

• Recall (Sensitivity or True Positive Rate): Recall indicates the model’s capability to 

identify all actual malware instances. It is the ratio of true positives to all actual 

positive (malicious) samples. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

• F1 Score: The F1 Score is the harmonic mean of Precision and Recall. It balances 

the trade-off between the two metrics, particularly useful when the class distribution is 

skewed. 

 𝐹1 =  2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙𝑅𝑒𝑎𝑐𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
 

 

• The AUC represents the probability that the classifier will rank a randomly chosen 

positive instance higher than a randomly chosen negative one. A higher AUC value 

indicates better model discrimination across various threshold settings. 

 AUC = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅) 𝑑𝐹𝑃𝑅
1

0
 

 

4.4 Model performance 

 The performance of the proposed GENDroid framework was evaluated through 

extensive experiments using the Drebin dataset. The framework integrates multi-modal 

feature fusion, Genetic Algorithm (GA)-based optimization, and ensemble learning, 

resulting in high classification performance for Android malware detection. Table 2 Shows 

the performance metrics for the proposed model. 
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Table 2: Performance Metrics for the Proposed Model 

 

Metric Value 

Accuracy 98.62% 

Precision 98.66% 

Recall 99.55% 

F1 Score 99.10% 

AUC 99% 

Source: Author’s own 

 

4.5 Analysis of visual results 

 Figure 2 shows the distribution of F1 scores across generations in the Genetic 

Algorithm. In early generations, we observe wide variability, reflecting random initial 

populations. However, starting from generation 5 onward, fitness values begin to stabilize 

and converge. This indicates the GA successfully evolves toward optimal solutions, 

selecting the most discriminative feature subsets and best hyperparameter combinations. 

 

Figure 2: Fitness Distribution Across Generations 

 

 
Source: Author’s own 
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 Figure 3 highlights the impact of genetic optimization. The initial classification 

model (without GA) yielded approximately 85% accuracy. After applying the Genetic 

Algorithm for both feature selection and hyperparameter tuning, accuracy increased 

significantly to 98.62%. This stark improvement validates the utility of evolutionary search 

in enhancing performance. 
 

Figure 3: Accuracy 
 

 
    Source: Author’s own 
 

Figure 4: F1 Score Comparison 
 

 
    Source: Author’s own 
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 Figure 4 compares the F1 score for each classifier in the ensemble. Both RF and 

MLP perform exceptionally well individually (F1 0.99), whereas NB and PA, although 

relatively weaker, still contribute valuable perspectives in ensemble voting. The ensemble 

model achieves the highest F1 score, proving the effectiveness of classifier fusion. 

 Figure 5 presents the ROC curves for all individual classifiers and the ensemble. The 

ensemble classifier, RF, and MLP all achieved an AUC of approximately 0.98–0.99, 

indicating a strong ability to distinguish between benign and malicious apps. 

 

Figure 5: ROC Curve 

 

 
Source: Author’s own 

 

 Figure 6 displays the top 10 most influential features as determined by the 

Random Forest classifier. Feature F26 was the most dominant, contributing over 15% to 

the classification decision. This analysis provides interpretability to the model, helping 

security analysts understand which permissions or APIs are most often linked to malware 

behavior. 
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Figure 6: Feature Importance Analysis 

 

 
Source: Author’s own 

 

 Figure 7 illustrates confusion matrices for each classifier. The ensemble model 

demonstrates superior performance with only 20 misclassifications out of 1,451 instances. 

PA, RF, and MLP also exhibit low false positives and false negatives. NB has significantly 

more false positives, confirming its lower reliability. The ensemble classifier’s minimal error 

rate affirms its capacity to balance precision and recall across imbalanced datasets. 

 

Figure 7: Confusion Matrices 
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Source: Author’s own 

 

 Figure 8 depicts the class distribution of the test set, which is moderately imbalanced, 

with benign samples comprising 76.6% and malware samples 23.4%. This imbalance 

necessitates models that maintain high recall to ensure malware instances are not 

overlooked. The high recall scores achieved by GENDroid suggest robustness against class 

imbalance. capacity to balance precision and recall across imbalanced datasets. 

 Figure 9 evaluates the performance of the Passive Aggressive (PA) classifier in 

incremental learning. Accuracy fluctuates across batches due to data variance but 

consistently remains above 92%, peaking at 94.6%. This supports the suitability of PA for 

real-time malware detection in dynamic Android environments where data arrives in 

streams. 
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Figure 8: Class Distribution in Test Set 

 

 
Source: Author’s own 

 

Figure 9: Batch-wise Accuracy 

 

 
Source: Author’s own 

 

4.6 Comparative analysis 

 To evaluate the effectiveness of the proposed GENDroid framework, we conducted 

a comparative analysis with several state-of-the-art Android malware detection techniques 
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reported in the literature. Table 3 summarizes the performance of different models across 

key evaluation metrics, namely Accuracy, Precision, Recall, and F1-Score. GENDroid 

demonstrates superior performance across most metrics. Specifically, it achieves an 

accuracy of 98.62%, which is competitive with or exceeds the accuracy reported in existing 

models. In terms of precision (98.66%), GENDroid effectively minimizes false positives, 

ensuring that benign apps are rarely misclassified as malicious. This is crucial in real-world 

scenarios to maintain user trust and avoid unnecessary restrictions. 

 The recall score of 99.55% highlights GENDroid’s high sensitivity in correctly 

identifying malicious applications, significantly outperforming traditional classifiers like 

Naive Bayes and certain heuristic-based techniques. This ability to accurately capture the 

majority of mal- ware cases makes GENDroid highly reliable in threat detection. 

 While methods such as Almarshad et al. (2023) and Liu et al. (2024) achieved 

high precision (0.989 and 0.9931 respectively), they operated on relatively smaller or im- 

balanced datasets. Their recall and F1 scores were also lower compared to GENDroid. The 

F1-score of 99.10%, which balances both precision and recall, reflects the robustness of the 

model across imbalanced datasets. Compared to techniques such as those by Alani & Awad 

(2022) and Liu et al. (2024), which show strong individual metrics, GENDroid provides a 

consistently high score across all evaluation parameters due to its hybrid design 

incorporating genetic optimization and multi-modal static feature fusion. 

 Moreover, the ensemble strategy adopted in GEN- Droid—leveraging the strengths 

of classifiers such as Random Forest, MLP, Naive Bayes, and Passive Aggressive—proves 

beneficial in generalizing across diverse malware behaviors. By optimizing both feature 

selection and hyperparameters through a genetic algorithm, the model adapts well to 

varying input structures without significant performance degradation. 

 

Table 3: Performance Comparison of Android Malware Detection Techniques 

 

Technique Accuracy Precision Recall F1 Score 

Wajahat et al. (2024) 0.9790 0.982 0.976 0.979 

Almarshad et al. (2023) 0.9940 0.989 0.988 0.987 

Alani & Awad (2022) 0.9798 0.981 0.9759 0.9783 

Mehtab et al. (2020) 0.9911 0.9933 0.9936 0.9934 

Mahindru & Sangal (2021) 0.9828 0.9961 0.9773 0.9866 

Liu et al. (2024) 0.9807 0.9931 0.9812 0.9871 

GENDroid (Proposed) 0.9862 0.9866 0.9955 0.9910 

Source: Author’s own 
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 In summary, GENDroid’s comprehensive approach to malware detection 

significantly improves detection performance and offers a scalable, interpretable, and 

adaptive framework suitable for practical deployment in the Android ecosystem. 

 

5.0 Conclusion 

 

 In this study, we proposed GENDroid, a robust and scalable Android malware 

detection framework that integrates multi-modal static features and evolutionary 

optimization techniques. Unlike traditional models that rely on isolated permission features 

or singular classification approaches, GENDroid harnesses a rich fusion of permissions, 

API calls, and intents—mapped through a Permission-to-Exploitation Mapping (PEM) 

strategy—to derive deeper semantic insights into application behaviors. 

 A genetic algorithm was employed not only for optimal feature subset selection but 

also for fine-tuning classifier hyperparameters, ensuring that the final ensemble model is 

both lightweight and high-performing. The ensemble comprises diverse classifiers including 

Random Forest, MLP, Naive Bayes, and Passive Aggressive, providing robustness and 

adaptability in detecting various malware types. 

 Extensive experiments on the Drebin dataset demonstrated that GENDroid 

outperforms several state-of-the-art techniques, achieving an accuracy of 98.62%, precision 

of 98.66%, recall of 99.55%, and an F1-score of 99.10%. These results validate the 

effectiveness of the proposed multi-modal optimization-driven approach in enhancing 

malware detection performance, especially in terms of recall and generalization. The 

modular and extensible nature of GENDroid makes it suitable for integration into real-

world Android security ecosystems. Future directions include extending the framework to 

incorporate dynamic analysis features, building real-time detection capabilities, and 

introducing malware risk scoring systems for finer-grained security assessment. 

 

6.0 Future Scope 

 

 The GENDroid framework has proven effective in static Android malware 

detection by leveraging multi-modal feature integration and genetic algorithm-driven 

optimization. However, to further elevate its practical utility and research value, several 

future enhancements can be considered: While GENDroid currently focuses on static 

features such as permissions, intents, and API calls, the addition of dynamic analysis—

monitoring run- time behavior such as system calls, file access, network usage, and memory 

footprints—can substantially in- crease detection accuracy, particularly against obfuscated 

and polymorphic malware. A hybrid model would offer greater insight into behaviorally 
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stealthy malware. In real- world applications, security professionals often require not just 

detection, but risk assessment. GENDroid can be extended to assign risk scores to each app 

based on the type and criticality of detected behaviors or permissions. This would enable 

prioritized threat response. 
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