
COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies 

Volume 5, Issue 1, Jan-Jun 2025, pp. 54-66 

DOI: 10.17492/computology.v5i1.2504 

https://www.journalpressindia.com/cjacsit 

© 2025 Journal Press India 
 

Gear Fault Detection with InceptionResNetV2 Transfer Learning 

 

DurgaPrasad Charakanam* 

 

ABSTRACT 

 

This study addresses the critical need for reliable gearbox fault detection in industrial 

machinery, aiming to enhance operational efficiency and reduce downtime. The research 

explores the application of deep learning techniques, specifically focusing on the 

InceptionResNetV2 transfer learning model, for analysing vibration signals using Constant 

Q Transform (CQT) spectrograms. CQT’s adaptive resolution and noise robustness make it 

superior for capturing time-varying frequency content in non-stationary signals, such as 

those from gearboxes. The custom dataset, derived from SpectraQuest’s Gearbox Fault 

Diagnostics Simulator, includes labeled CQT spectrograms of healthy and faulty 

gearboxes, preprocessed and augmented for model training. The InceptionResNetV2 

architecture, combining Inception modules and residual connections, effectively captures 

multiscale features, achieving 98.04% accuracy in fault classification. Evaluation metrics, 

including precision, recall, and F1 score, confirm the model’s robustness. Comparative 

analysis with other methods highlights its superiority in handling limited data and noisy 

conditions. This work demonstrates the viability of transfer learning-based fault detection 

systems for industrial applications, offering a template for predictive maintenance 

solutions. Future improvements will focus on multi-modal fusion and explainable AI 

techniques for enhanced interpretability. 

 

Keywords: Gearbox Fault Detection; Deep Learning; Constant Q Transform (CQT); 

Transfer Learning; Vibration Analysis. 

 

1.0 Introduction 

 

 The field of machinery fault diagnosis is critical for ensuring the reliable and 

efficient operation of industrial equipment (Neupane et al., 2024).  
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 Gearboxes, as essential components in many mechanical systems, are particularly 

susceptible to faults that can lead to significant downtime, economic losses, and safety 

hazards (Liu et al., 2016). Traditional methods of condition monitoring, which rely on 

manual feature extraction and statistical analysis of signals, often struggle to cope with the 

complexity and variability of modern machinery (Kumar et al., 2018). These methods may 

be limited in their ability to distinguish between different fault types and locations, and they 

may not be robust when operating under time-varying conditions (Wang et al., 2019). 

Therefore, there is a need for more intelligent and automated techniques for gearbox fault 

diagnosis.  In recent years, deep learning (DL) has emerged as a promising approach for 

addressing these challenges. DL models, such as Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), and Autoencoders (AEs), can automatically learn 

complex features directly from raw data, thus reducing the need for manual feature 

engineering and expert knowledge (Liu et al., 2018).  

 These techniques have shown excellent performance in various domains, including 

image recognition and speech recognition. They are also well-suited for analyzing time 

series data, allowing for the capture of temporal patterns present in vibration or acoustic 

signals generated by faulty gearboxes (Liu et al., 2016). The capacity of deep learning 

models to extract complex, high-level features and improve classification performance has 

led to their increasing application in mechanical fault diagnosis (Neupane et al, 2024). 

Among the various DL techniques, Stacked Autoencoders (SAEs) have demonstrated 

effectiveness in extracting meaningful features from data (Liu et al., 2018). SAEs are a type 

of neural network that can learn compressed representations of input data. By stacking 

multiple autoencoders, the network can learn hierarchical feature representations, capturing 

more complex patterns within the data.  

 These features can then be used to train a classifier to identify different fault types. 

Furthermore, techniques like dropout and ReLU activation can be used to improve the 

performance and reduce overfitting in SAE networks (Liu et al., 2018). Another area of 

interest is the use of time-frequency analysis methods, such as the Short-Time Fourier 

Transform (STFT) and the Stockwell Transform (ST), which allow for the representation of 

signals in both the time and frequency domains (Stockwell et al., 1996). These methods are 

particularly useful in fault diagnosis where the frequency components of a signal can 

change over time, or where the signal is non-stationary. By combining timefrequency 

analysis with deep learning models, it is possible to develop robust fault diagnosis systems 

that are invariant to changes in load and rotational speed (Wang et al., 2019).  

This study explores the application of deep learning techniques for gearbox fault 

diagnosis. It covers the use of CQT analysis for feature extraction, the integration of time-

frequency analysis with deep learning, and the use of the Xception transfer learning model 
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for fault detection (Bliznyuk et al., 2014). Additionally, it discusses the use of spherical 

coordinates to improve the consistency of results from vibration signals and the 

development of a tacholess method for diagnosing faults when rotational speed is not 

constant (Mohammed & Rantatalo, 2020). The study also highlights the importance of 

transfer learning and the need for robust feature extraction methods that can improve the 

accuracy and reliability of fault diagnosis in complex industrial environments (Hakim et al., 

2023). By presenting a comprehensive overview of existing research, this paper serves as a 

valuable resource for researchers and engineers working in the field of machinery fault 

diagnosis. 

 

2.0 Literature Review 

 

Gear fault prediction is critical for ensuring the reliability and safety of mechanical 

systems. This literature review covers various techniques employed for this purpose, 

including deep learning, signal processing, and active learning, while highlighting their 

methodologies and limitations. 

 

2.1 Deep Learning-based methods  

Deep learning has revolutionized fault diagnosis by automating feature extraction 

and classification. The MF-DRCN model introduces a Multireceptive Field Denoising 

(MFD) block to improve feature extraction and an Adaptive Feature Integration (AFI) 

module for effective feature integration, achieving high diagnostic accuracy even under 

strong noise conditions (Xu et al., 2022). However, the performance of MF-DRCN may 

vary across different industrial contexts. Transfer learning has been effectively used to 

address the issue of limited data availability. The MWSAN model uses a Multiscale Domain 

Adversarial Network (MDAN) and a weight selection mechanism based on maximum 

likelihood estimation and Gaussian mixture model for partial domain adaptation (Quan et 

al., 2022). While effective in discriminating between shared and outlier classes, its focus is 

primarily on planetary gearbox fault diagnosis, suggesting the need for further exploration 

for other types of mechanical systems. 

Similarly, another study combines Variational Mode Decomposition (VMD) for 

feature extraction and a fine-tuned VGG16 model for classification, achieving a high 

accuracy of 99.98% (Li et al., 2022). This method is robust to noise and computationally 

efficient, but its results are limited to specific datasets. The ECA-CN model improves fault 

detection accuracy for compound faults using an Efficient Channel Attention (ECA) 

mechanism within a Capsule Network (CN) (Zhang et al., 2023). It enhances feature 
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selection and provides a robust, noise-resistant diagnosis system. However, it is only tested 

on one dataset, requiring further validation in real-world industry settings.  

FaultFormer uses self-supervised pretraining with transformers, addressing data 

scarcity and improving adaptability to new fault classes and datasets (Zhou & Farimani, 

2024). It employs different tokenization strategies (Constant, CNN, Fourier) and data 

augmentation to enhance the model’s performance. However, the model requires large 

unlabeled datasets for effective pretraining and lacks interpretability. A fusion model using 

LSTM and CNN significantly improves fault detection accuracy, demonstrating the benefits 

of combining spatial and temporal features, using Continuous Wavelet Transform (CWT) 

for feature extraction, with an F1-score of 1.0 (Ghanbari et al., 2023). This shows the 

model’s superior precision and recall. However, it is tested on a specific dataset and may be 

computationally complex for real-time deployment. The FWR50 model, which uses 

Continuous Wavelet Transform (CWT) with transfer learning, is effective for fault 

classification with only 10% training data (Nguyen et al., 2024). However, it requires 

further validation on different gear types. 

 

2.2 Signal processing-based methods  

Signal processing techniques are crucial for extracting relevant features from raw 

vibration data. A study introduces a novel rotational frequency search algorithm and a self 

referencing frequency identification method using PI and SI indices for automated fault 

diagnosis (Xu et al., 2022). The anti-interference framework reduces false positives; 

however, it has only been tested on a bogie gearbox, requiring additional validation for 

other machinery. Similarly, FBSE-EWT improves frequency resolution and classification 

accuracy, particularly when used with the Random Forest classifier, demonstrating an 84% 

classification accuracy (Ramteke, et al., 2023). However, the dataset size is limited, and its 

performance may vary under different conditions.  

Another approach, GES2N, provides a generalized objective function for 

optimizing filter design under time-varying speed conditions by improving fault signature 

enhancement (Schmidt et al., 2025). However, it requires careful parameter tuning and is 

primarily tested on gear faults. 

 

2.3 Active learning methods 

Active learning focuses on reducing annotation efforts. A study using a Bayesian 

uncertainty estimation framework to reduce manual annotation effort in vision-based gear 

defect detection demonstrated that it reduces annotation effort by 6x while maintaining 

accuracy (Liao & De Geest, 2024). While this approach is beneficial for reducing data 

needs, class imbalance and annotation inconsistencies remain.While each method provides 
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unique insights, there are some common drawbacks. Deep learning models often require 

large amounts of labeled data, though transfer learning and self supervised methods are 

addressing this. Furthermore, deep learning models can be computationally intensive and 

lack interpretability, making them difficult to deploy in real-time. 

Signal processing techniques need manual feature engineering and might not 

capture complex nonlinearities in the data. Active learning methods still require some initial 

labeled data and may suffer from annotation bias or class imbalance. Many studies use 

specific datasets, which limits the generalizability of the models for varied industrial 

settings. Deep learning provides powerful tools for automatic feature extraction and 

classification, while signal processing techniques provide valuable methods for extracting 

interpretable features from data. Hence, we focus on combining the strengths of these 

approaches by applying CQT on the signals and then applying the Xception transfer 

learning mechanism to build robust, efficient, and adaptable fault diagnosis systems for a 

wide range. 
 

3.0 Dataset and Preprocessing 

 

The Gear Box Detection dataset includes vibration data recorded using 

SpectraQuest’s Gearbox Fault Diagnostics Simulator (Figure 1). Four vibration sensors 

captured data under varying loads, ranging from 0% to 90% in 10% increments. The dataset 

consists of 20 files—10 for a healthy gearbox and 10 for a broken-tooth condition. By 

applying CQT, a custom dataset comprising labeled images of healthy and faulty gearboxes 

was created and partitioned into training (70%), validation (15%), and test (15%) sets. 

Images were standardized to a 128×128×3 resolution and normalized using Inception 

specific preprocessing. To enhance model generalization, data augmentation techniques 

were applied during training, including random horizontal flips (±20◦ rotation), contrast 

variation (10%), and horizontal flipping to simulate real-world operational variances. 

The Gear Box Detection dataset includes vibration data recorded using 

SpectraQuest’s Gearbox Fault Diagnostics Simulator. Four vibration sensors captured data 

under varying loads, ranging from 0% to 90% in 10% increments. The dataset consists of 20 

files—10 for a healthy gearbox and 10 for a broken-tooth condition. By applying CQT, a 

custom dataset comprising labeled images of healthy and faulty gearboxes was created and 

partitioned into training (70%), validation (15%), and test (15%) sets. Images were 

standardized to a 128×128×3 resolution and normalized using Inception specific 

preprocessing. To enhance model generalization, data augmentation techniques were 

applied during training, including random horizontal flips (±20◦ rotation), contrast variation 

(10%), and horizontal flipping to simulate real-world operational variances.perceptual 

resolution across octaves, reducing spectral leakage and enhancing noise robustness.  
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Figure 1: Illustrates the Gearbox Prognostics Simulator (GPS) by SpectraQuest, used 

for Machinery Health Monitoring 

 

 
 

For a discrete vibration signal x(n), the CQT at frequency bin k and time index n is 

defined as: 

𝑋[𝑘, 𝑛] = ∑ 𝑥[𝑛 − 𝑚]𝑁𝑘−1
𝑚=0 ⋅ 𝑤𝑘[𝑚] ⋅ 𝑒−𝑗2𝜋𝑓𝑘𝑚/𝑓𝑠   ...1 

where: center frequency 𝑓𝑠 is geometrically spaced: 

𝑓𝑘 = 𝑓𝑚𝑖𝑛 ⋅ 2𝑘/𝑏       ...2 

The window length 𝑁𝑘  adapts inversely with 𝑓𝑘: 

𝑁𝑘 = 𝑄 ⋅
𝑓𝑠

𝑓𝑘
        ...3 

 and the window function 𝑤𝑘 is tapered and normalized. This structure ensures high 

frequency resolution at low frequencies and high time resolution at high frequencies, 

isolating meshing frequencies and transient impacts effectively. CQT’s logarithmic scaling 

aligns with harmonic gearbox vibrations, enabling clear separation of meshing components 

and their modulations, while reduced spectral leakage improves fault detection accuracy. 

Computational efficiency via FFT-based optimizations supports real-time monitoring. 

Studies highlight CQT’s superiority in diagnosing bearing defects and gear wear, where 

STFT and WT fail to resolve closely spaced harmonics.For non-stationary vibration signals, 

CQT’s adaptive resolution,geometric frequency spacing, and noise robustness make it 

indispensable, positioning it as the preferred tool for gearbox diagnostics despite the 

continued utility of STFT and WT. 
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4.0 InceptionResNetV2 Transfer Learning Model 

 

InceptionResNetV2 is a hybrid deep learning model that combines the strengths of 

the Inception architecture andresidual connections (ResNet), making it particularly well 

suited for analyzing CQT spectrograms,which are 2D time-frequency representations of 

vibration signals. This model offers several advantages for CQT spectrogram analysis, 

including its ability to capture complex patterns, robustness to noise, and scalability, making 

it ideal for industrial applications such as gearbox fault diagnosis (Figure 2). Compared to 

models like VGG or standard Inception, InceptionResNetV2 provides a more sophisticated 

feature extraction mechanism. One of its key strengths lies in the combination of Inception 

modules and residual connections, which allows the model to capture both fine-grained and 

high-level features in CQT spectrograms, critical for identifying subtle fault patterns in 

gearbox vibration signals.The Inception modules use parallel convolutional layers with 

different kernel sizes (e.g., 1 × 1, 3 × 3, 5 × 5), enabling multi-scale feature extraction.  

 

Figure 2: Proposed InceptionResNetV2 Transfer Learning Model 

 

 
 

This capability is particularly useful for analyzing CQT spectrograms, where 

transient events (e.g., gear tooth impacts) and steady-state patterns (e.g., harmonic 

frequencies) need to be detected.Additionally, the residual connections in 

InceptionResNetV2 enhance robustness to noise by preserving important features through 

skip connections, ensuring reliable feature extraction even in noisy conditions, which is 

common in vibration signals from gearboxes due to environmental factors or sensor 

inaccuracies. Another significant advantage of InceptionResNetV2 is its transfer learning 

capabilities. Pre-trained on large datasets like ImageNet, the model can be fine-tuned for 

specific tasks, such as analyzing CQT spectrograms, significantly reducing the need for 

large labeled datasets, which are often scarce in industrial applications.  

This makes InceptionResNetV2 highly effective for tasks like gearbox fault 

diagnosis, where labeled data may be limited. Furthermore, the model achieves state-of-the-

art performance with a relatively efficient architecture, balancing computational efficiency 
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and feature extraction capability. Its architecture includes a Stem Block that down samples 

the input CQT spectrogram and extracts low-level features crucial for capturing transient 

events in vibration signals, such s gear tooth impacts or bearing defects. Inception-ResNet 

Modules combine multi-scale feature extraction with residual connections, ensuring smooth 

gradient flow and preventing vanishing gradients. Reduction Blocks downsample feature 

maps, reducing computational complexity while preserving important features, which is 

particularly useful for processing large CQT spectrograms.  

Finally, Global Average Pooling and Fully Connected Layers aggregate high-level 

features and perform classification or regression tasks, with global average pooling 

reducing the dimensionality of feature maps to make the model more efficient. 

InceptionResNetV2 has been successfully applied in various industrial tasks, particularly in 

vibration signal analysis for gearbox fault diagnosis. 

 

Table 1: Performance Comparison of Various Fault Detection Methods 

 

Literature & Year Accuracy (%) 

Dutta et al., 2024 (GearFaultNet-1D CNN) 94.06 

Ahmed et al., 2023(Autoencoder-based Model) 91.00 

Proposed Method, 2025 (ResNet-EfficientNetV2-based Model) 98.04 

 

It has been used to diagnose faults such as gear tooth cracks, misalignments, and 

bearing defects, leveraging its ability to capture multi-scale features to identify subtle fault 

patterns in CQT spectrograms. Additionally, it has been applied to condition monitoring of 

rotating machinery, including gearboxes and motors, demonstrating robustness to noise and 

the ability to capture complex patterns, making it suitable for real-world industrial 

environments. The model’s pre-trained weights have been fine-tuned for various industrial 

tasks, including defect detection and fault diagnosis, highlighting its versatility for 

analyzing vibration signals in data-limited scenarios.  

Overall, InceptionResNetV2 is a powerful and versatile model for analyzing CQT 

spectrograms, offering advantages such as multi-scale feature extraction, robustness to 

noise, and transfer learning capabilities. Its hybrid architecture, combining Inception 

modules and residual connections, makes it particularly effective for capturing the complex 

patterns present in gearbox vibration signals. Its proven success in industrial applications, 

such as gearbox fault diagnosis and condition monitoring, further validates its effectiveness 

for vibration signal analysis.leveraging InceptionResNetV2, researchers and engineers can 

achieve high accuracy and robustness in analyzing vibration signals, even in noisy and data-

limited environments. 
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5.0 Results and discussions  

 

 The use of Adam optimizer, sparse categorical cross-entropy loss, confusion 

matrices, ROC analysis, specificity, and AUC is crucial for analyzing CQT spectrograms 

derived from gearbox vibration signals in industrial fault diagnosis. The Adam optimizer, 

with its adaptive learning rate and efficient convergence properties, is highly effective for 

training deep learning modelson complex datasets like CQT spectrograms, enabling faster 

convergence and higher accuracy in classifying gearbox faults. Sparse categorical cross-

entropy loss is computationally efficientfor multi-class classification tasks, such as 

distinguishing between normal conditions, gear tooth cracks, and bearing defects, ensuring 

the model learns to differentiate fault typeseffectively.  

 Confusion matrices provide a detailed breakdown of predictions, highlighting true 

positives, false positives, and other metrics to evaluate class-wise performance, which 

iscritical for understanding model strengths and weaknesses in identifying fault types. ROC 

analysis evaluates model performance across classification thresholds by plotting the true 

positive rate against the false positive rate, offering threshold independent insights and 

enabling comparisons between models, especially in imbalanced datasets. Specificity 

ensures the model reliably identifies normal conditions, minimizing false alarms in 

industrial settings.  

 

Figure 3: Confusion Matrix of Proposed Model 
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 Finally, AUC, the area under theROC curve, summarizes overall model 

performance with a single scalar value, providing a robust metric for evaluating fault 

diagnosis models in scenarios with class imbalance. In Figure 3, Confusion matrix metrics 

reveal strong performance with 318 true positives, 320 true negatives, 9 false positives, and 

9 false negatives, yielding an accuracy of 98.04% (Table 1), precision of 97.06%, recall of 

97.04%, and an F1 score of 95.04%. Specificity is calculated at 97.27%, ensuring reliable 

identification of normal conditions, while ROC analysis and AUC provide threshold-

independent evaluations, particularly valuable for imbalanced datasets. Together, these tools 

ensure reliable fault diagnosis and enhance the practical applicability of deep learning 

models in analyzing gearbox vibration signals. 

 These metrics are essential for evaluating the performance of fault diagnosis 

models, particularly in scenarios where class imbalance is prevalent. By leveraging these 

tools and metrics,researchers and engineers can develop robust and reliable models for 

analyzing gearbox vibration signals using CQT spectrograms. Various fault detection 

methods have been explored for machinery, with notable advancements in deep learning, 

signal processing, and transfer learning techniques.  

 One approach,using Deep Neural Networks (DNN) for gear defect detection, 

achieved 95.5% accuracy, offering real-time diagnosis in low performance settings, but with 

limitations in classifying new defect types. Autoencoder-based models, particularly a 6-

layer model for anomaly detection in industrial machines, demonstrated high precision 

(98%) and recall (83%), proving effective for gearbox fault detection. GearFaultNet, a 

lightweight 1D Convolutional Neural Network (CNN), achieved 94.06% accuracy in 

distinguishing gearbox conditions but was limited to binary classification. LECA-

EfficientNetV2, which utilizes a lightweight channel attention mechanism, set a new 

standard with 99.38% accuracy on bearing and 99.75% on gear samples,optimizing 

diagnosis time and robustness, especially for small sample sizes. LECA-EfficientNetV2 

also outperformed other attention mechanisms, such as SE-EfficientNetV2 and ECA-

EfficientNetV2, in both accuracy and diagnosis time. 

 Additionally, transfer learning tasks demonstrated its superior feature learning 

ability, reaching 99.63% accuracy in fault diagnosis under varying conditions. When 

compared to models like ResNet50 and MobileNetV3-L, LECA-EfficientNetV2 showed the 

highest accuracy and shortest diagnosis time. Traditional algorithms, including Support 

Vector Machines (SVM) and Artificial Neural Networks (ANN), were mentioned but lacked 

detailed performance metrics. CNNs, in various forms (1D-CNN, 2D-CNN, and hybrid), 

continue to be highly effective for fault diagnosis, with attention mechanisms frequently 

enhancing performance by focusing on relevant features in data. 
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6.0 Conclusions  

 

 This work demonstrates the viability of ResNet- EfficientNetV2 transfer learning-

based fault detection for industrial systems, achieving 98.04% accuracy with rigorous 

evaluation. The pipeline’s modular design permits adaptation to other rotating machinery 

systems, offering a template for predictive maintenance solutions. By reducing unplanned 

downtime through early fault identification, the framework holds significant potential for 

cost reduction in manufacturing and energy sectors. The system, while effective for visible 

faults, requires future improvements in multi-modal fusion for subsurface defect detection, 

few-shot learning to handle rare fault categories, and explainable AI techniques like Grad-

CAM or attention mechanisms for enhanced interpretability in maintenance. Future efforts 

will focus on real-time deployment and multi-modal data integration for comprehensive 

health monitoring. 
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