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ABSTRACT 

 

The swift expansion of Android devices and ap- plications has greatly enlarged the attack surface for 

cyber threats, especially malware. Conventional signature-based detection methods have become 

inadequate because of the rise of advanced evasion strategies like obfuscation, polymorphism, and 

encryption. In reaction to these changing threats, machine learning (ML) has received significant 

focus as an effective method for creating intelligent and adaptable malware detection systems. This 

study offers an extensive examination of the latest progress in ML techniques for detecting Android 

malware, deliberately omitting deep learning methods to concentrate on traditional and ensemble 

ML models. The research starts by exploring different forms of malware and the methods used to 

avoid detection, then presents a summary of malware analysis approaches such as static, dynamic, 

and hybrid analysis. A significant focus is placed on feature engineering techniques covering both 

extraction and selection since they are vital for enhancing the accuracy and efficiency of ML 

classifiers. The assessment classifies and examines frequently employed ML algorithms like Random 

Forests, Support Vector Machines, Decision Trees, Naive Bayes, and k-Nearest Neighbors, 

emphasizing their usage scenarios, advantages, drawbacks, and documented effectiveness on 

standard datasets. Additionally, we examine the difficulties present in existing ML-driven methods, 

such as class imbalance, dataset diversity, overfitting, and insufficient generalization to new 

malware types. This document additionally highlights future research avenues, including the 

incorporation of hybrid analysis methods, explainable ML models, and adaptable learning strategies 

to tackle concept shift and adversarial interference. This review seeks to assist researchers and 

practitioners in creating effective, scalable, and robust ML-based solutions for detecting Android 

malware by synthesizing the current body of work. 

 

Keywords: Android malware; Machine learning; Static analysis; Dynamic analysis; Hybrid 

analysis; Malware detection; Ensemble learning; Feature selection; Mobile security; Adversarial 

robustness; Classification algorithms; Cybersecurity. 

 

1.0 Introduction 

 

 The extensive use of Android-based mobile devices, propelled by their open architecture 
______________________________ 

*Student, Department of Computer Engineering, NIT-Kurukshetra, Haryana, India  

(E-mail: emailto.ankit123@gmail.com) 

https://www.journalpressindia.com/cjacsit
https://www.journalpressindia.com/computology-journal-of-applied-computer-science-and-intelligent-technologies/doi/10.17492/computology.v4i2.2401
https://www.journalpressindia.com/cjacsit


A Survey of Classical and Hybrid Machine Learning Models for Android Malware 

Detection: Techniques, Taxonomies, Challenges, and Future Research Directions 

85 

 
and user-friendly characteristics, has rendered them a prime target for cybercriminals. With 

millions of applications accessible for download from both official and unofficial sources, 

the Android ecosystem has experienced a notable increase in malicious software, commonly 

referred to as malware. The complexity and evasiveness of malware attacks have escalated, 

presenting significant risks to user privacy, financial security, and the overall integrity of 

systems. Malware encompasses various types, including viruses, worms, trojans, 

ransomware, spyware, adware, and rootkits. These harmful programs are engineered to 

execute unauthorized actions, such as data theft, surveillance, unauthorized transactions, or 

the disabling of system functionalities. The sophistication of contemporary malware is 

further augmented by the application of evasion techniques like obfuscation, encryption, 

code packing, polymorphism, and metamorphism. These strategies are meticulously 

designed to circumvent conventional detection methods, rendering static signature-based 

antivirus solutions largely ineffective against unknown or zero- day vulnerabilities. 

 Traditional malware detection methods predominantly depend on both static and 

dynamic analysis. Static analysis entails examining application components, including 

permissions, API calls, and manifest files, without executing the application. Although this 

approach is efficient, it faces challenges in identifying malware that utilizes code 

obfuscation or encryption. Conversely, dynamic analysis monitors the behavior of 

applications in controlled settings (such as sandboxes) during their runtime. While it is 

more effective at revealing concealed malicious activities, dynamic analysis is resource- 

intensive and vulnerable to anti-analysis strategies employed by malware to identify and 

avoid virtualized environments. 

 Figure 1 Illustrates the fluctuation and overall increase in mobile malware attacks 

over a decade is noteworthy. The initial years (2015–2019) indicate a steady rise, 

culminating in 2018 with 10.5 million attacks. A significant decrease was observed from 

2020 to 2022, likely attributed to heightened security awareness and changes in mobile 

usage patterns due to the pandemic. Nevertheless, in 2023 and 2024, there was a remarkable 

spike, with reported attacks soaring to 33.8 million and 33.3 million respectively, 

underscoring the resurgence and advancing complexity of mobile malware, particularly 

through aggressive adware, ransomware, and banking trojans. In ma- chine learning-based 

malware detection systems, the process generally commences with feature extraction from 

Android application packages (APKs). Typical features encompass requested permissions, 

intent filters, utilized APIs, opcode sequences, network behaviors, and system calls. These 

features are subsequently refined using feature selection techniques such as Information 

Gain, Chi-square, Recursive Feature Elimination (RFE), or optimization-based methods like 

Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Effective feature 
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selection is vital for enhancing classification accuracy, minimizing overfitting, and reducing 

computational demands. 

 

Figure 1: Year Wise Depiction in Number of Malware Attacks 

 

 
 

Figure 2: Diagram for Malware Detection using ML 
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 Figure 2 outlines a detailed procedure for identifying Android malware through 

classical machine learning methods. It starts with the gathering of both benign and 

malicious APK files, which are then transformed into a structured dataset (for instance, in 

CSV or PNG format). Subsequently, the system conducts feature extraction and 

engineering, converting raw application data (including permissions, opcodes, or network 

logs) into attributes that can be processed by machines. Following this, preprocessing steps 

(such as normalization or encoding) and feature selection are carried out, eliminating 

redundant or noisy features to enhance model efficiency. The refined dataset is 

subsequently input into a machine learning classification algorithm such as Random Forest, 

SVM, or Naive Bayes which categorizes each application as either malicious or benign. 

This systematic approach guaran- tees adaptability, accuracy, and interpretability while 

ensuring lightweight performance that is appropriate for mobile environments. 

 This paper provides an extensive review of Android malware detection techniques 

that rely exclusively on machine learning approaches. It encompasses the entire detection 

pipeline—from feature extraction and selection to the de- sign and evaluation of classifiers. 

By omitting deep learning techniques, which typically demand greater computational 

resources and are often less interpretable, this review highlights lightweight, scalable, and 

interpretable machine learning models that are suitable for real-time applications and 

resource- constrained settings such as smartphones and edge devices. 

 The objective of this review is to consolidate current research, pinpoint 

performance trends and constraints, and delineate prospective research avenues. By 

conducting a comparative analysis of machine learning algorithms, feature selection 

methods, and datasets referenced in the literature, this paper seeks to furnish researchers and 

practitioners with a strong basis for developing resilient and effective machine learning- 

based Android malware detection systems. 

 

2.0 Motivation and Problem Statement 

 

 Despite the promise of machine learning, current malware detection systems 

encounter numerous obstacles. These challenges encompass imbalanced datasets, high-

dimensional feature spaces, insufficient generalization to novel or obfuscated malware, and 

limited capabilities for multiclass classification. Furthermore, many methodologies are not 

tailored for real- time or on-device execution, and few tackle adversarial evasion strategies. 

There is a pressing need for a comprehensive review that specifically examines traditional 

machine learning models excluding deep learning to assess their strengths, weaknesses, and 

future prospects in developing robust Android malware detection systems. The motivation 

of this paper is to create an efficient An- droid malware detection system utilizing classical 
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machine learning techniques. As mobile malware becomes increasingly sophisticated and 

traditional signature-based methods show limitations, there is an escalating demand for 

intelligent, adaptive, and lightweight detection strategies. Machine learning provides the 

capability to recognize malicious behaviors based on learned patterns from application 

features, rendering it particularly suitable for real-time detection on devices with limited 

resources. This paper intends to investigate and assess ML-based solutions that achieve a 

balance between accuracy, efficiency, and interpretability for practical application in 

Android environments. 

 

3.0 Background of Malware 

 

3.1 Definition and purpose of malware 

 Malware, short for malicious software, refers to any program or code intentionally 

crafted to harm, exploit, or disable computers, mobile devices, or networks. In the context 

of Android systems, malware is often disguised as legitimate apps, exploiting the operating 

system’s open nature to bypass security protocols and gain unauthorized access to sensitive 

data. The ultimate goal of malware may range from data theft, unauthorized surveillance, 

and financial fraud, to complete system disruption. Unlike ordinary software bugs, malware 

is purposefully designed with malicious intent. Once installed, it can manipulate core 

system files, monitor user activity, modify settings, or open backdoors for remote attackers. 

With mobile devices becoming central to online banking, communication, and 

authentication, Android malware now represents a major cybersecurity concern globally. 

 

3.2 Evolution of malware 

 The history of malware dates back to the 1980s, when the first known PC virus, 

Brain, emerged. This early form of malware demonstrated how software could replicate and 

spread across systems. Over the years, malware has evolved in both complexity and 

delivery mechanisms. Initially spread via floppy disks or email attachments, modern 

malware exploits network vulnerabilities, application permissions, and user behavior to 

propagate. In the mobile domain, especially Android, malware growth has been 

exponential. Factors contributing to this include: 

• Widespread use of third-party app stores. 

• Lack of stringent app vetting in unofficial sources. 

• Android’s flexible permission model. 

• Inconsistent OS updates across devices. 

Attackers now employ advanced obfuscation techniques to create dynamic, stealthy, and 

often polymorphic malware that is capable of evading traditional detection tools. 
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3.3 Common types of malware in android ecosystem 

 Android malware exists in various forms, each designed to exploit a different aspect 

of system vulnerability. Some of the most common types include: 

• Viruses: Programs that attach themselves to legitimate files or applications, replicating 

and spreading when the host is executed. 

• Worms: Self-replicating malware that spreads across devices or networks without user 

intervention. 

• Trojans: Malicious code hidden inside seemingly harm- less apps, often requiring the 

user to grant unnecessary permissions. 

• Ransomware: Locks or encrypts user data and demands payment for restoration. 

• Spyware: Covertly gathers sensitive user data, such as login credentials, call logs, GPS 

locations, and messages. 

• Adware: Delivers unwanted advertisements, often degrading user experience and acting 

as a vector for more dangerous malware. 

• Rootkits: Provide attackers with privileged access to systems while hiding their 

presence. 

• Keyloggers: Capture user keystrokes to extract passwords or sensitive input. 

• Fileless malware: Operates in memory without writing files to disk, making it harder to 

detect using traditional antivirus tools. 

 

3.4 Malware evasion techniques 

 Modern malware is rarely straightforward. Attackers increasingly use evasion 

tactics to avoid detection during both static and dynamic analysis. These include: 

• Obfuscation: Renaming variables and functions, inserting junk code, or encrypting 

payloads to confuse static scanners. 

• Polymorphism: Generating new versions of malware with different signatures but 

similar functionality, often at runtime. 

• Metamorphism: Changing the entire code structure while preserving behavior, 

rendering signature-based detection useless. 

• Packing and Encryption: Wrapping malicious code inside encrypted containers or 

packers to mask the executable’s true behavior. 

Such techniques complicate the detection process and demand adaptive, intelligent systems 

that can learn patterns beyond static rules—an area where machine learning excels. 

 

3.5 The need for intelligent malware detection 

 As Android malware becomes more evasive and polymorphic, traditional security 

methods such as signature-based scanning and rule-based detection have proven inadequate. 
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These systems depend on prior knowledge of known malware, making them ineffective 

against zero-day exploits or unseen variants. Furthermore, they cannot adapt dynamically to 

evolving malware behaviors. In contrast, machine learning provides a data-driven approach 

capable of: 

• Identifying malicious behavior based on patterns and statistical anomalies. 

• Learning from both labeled and unlabeled data and adapting to new malware types with 

model retraining. 

• Supporting lightweight implementations suitable for mobile and embedded devices. 

 This justifies the increasing research focus on ML-powered detection systems, 

which can analyze app behavior, permissions, and API usage to distinguish benign apps 

from malicious ones even when traditional indicators are absent. 

 

3.6 Process of malware investigation 

 Effective detection and mitigation of malware starts with a comprehensive 

understanding of its operation, propagation, and interaction with the host system. The 

process of investigating malware—commonly referred to as malware analysis seeks to 

reveal the internal architecture, functional logic, and behavioral patterns of potentially 

harmful applications. This knowledge is essential for the development of machine learning 

(ML)-based detection systems, which depend significantly on feature-rich, labeled data 

obtained during these analyses. In Android environments, malware analysis is typically 

conducted through three complementary methods: static analysis, dynamic analysis, and 

hybrid analysis. Each method offers distinct advantages and challenges in the detection and 

characterization of malicious behavior. 

 

3.6.1 Static analysis 

 Static analysis entails the examination of an Android application package (APK) 

without running it. Analysts, along with automated tools, scrutinize the internal structure of 

the application—such as manifest files, Dalvik bytecode (classes.dex), and resources—to 

detect any suspicious patterns. 

 Key static features often extracted for ML-based malware detection include 

Requested permissions, API call sequences, Control flow graphs (CFGs), Opcode 

sequences, Intent filters, Hardcoded URLs or IP addresses, Certificate metadata. In the 

diagram in Figure 3 the process of static malware analysis is illustrated, where APK files 

are evaluated without execution through the use of disassemblers or analysis tools. The 

focus of feature extraction is on n-grams, opcodes, string patterns, hash values, and PE file 

metadata. The data that is extracted is represented in various formats, including matrices 
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and graphs, and subsequently provided to detection algorithms—ranging from rule-based 

systems to machine learning and deep learning models—for the purpose of classification. 

 

Figure 3: Diagram of Static Analysis Workflow (Santosh et al., 2024) 
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Figure 4: Diagram of Dynamic Analysis Workflow (Santosh et al., 2024) 

 

 
 

3.6.2 Dynamic analysis 

 Dynamic analysis, on the other hand, involves the execution of the application 

within a con- trolled, sandboxed environment (for instance, Cuckoo Sandbox or DroidBox) 

while monitoring its behavior during runtime. This approach aids in revealing malicious 

activities that may only be activated during execution. Commonly monitored behaviors 

include Network activity (e.g., unauthorized server communication), File system changes, 
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System API usage, Battery and memory consumption, Inter-process communication (IPC) 

events The diagram in Figure 4 delineates the workflow of dynamic malware analysis, 

where behavior is monitored in either real or virtual environments utilizing tools such as 

Wireshark and Cuckoo Sandbox. The primary dynamic features that are extracted include 

file operations, registry modifications, network activity, and system calls. These features are 

organized into formats like matrices, graphs, or trees and are subsequently input into 

detection systems employing traditional, machine learning, or deep learning methodologies. 

 

3.6.3 Hybrid analysis 

 To overcome the shortcomings of both static and dynamic analysis, researchers are 

increasingly utilizing hybrid analysis, which integrates insights from both methodologies. 

This strategy seeks to deliver a thorough understanding of an application’s behavior by 

linking its code structure with its runtime execution. For example, a hybrid framework may 

initially extract permissions and opcodes from APK files, followed by monitoring the actual 

API calls made during execution. Features derived from both sources can be combined and 

input into machine learning classifiers such as Random Forests or Support Vector Machines 

to attain enhanced accuracy and robustness. 

 

4.0 Literature Review 

 

 In recent years, machine learning (ML) has become a vital method in the detection 

of Android malware due to its ability to identify intricate patterns, adapt to changing threats, 

and provide automated analysis. The current body of literature can be generally divided into 

three categories: 

• ML-based malware detection models 

• feature selection and optimization techniques 

• comparative analysis based on datasets and classifiers 

 This review explicitly excludes deep learning models to concentrate on 

interpretable and resource-efficient ML methods. 

 Garg & Baliyan (2024) proposed an ensemble ML model combining PART, 

RIDOR, SVM, and MLP classifiers to detect zero-day malware. The parallel ML classifiers 

like Pruning Rule-based Classification Tree (PART), Ripple Down Rule Learner (RIDOR), 

SVM and MLP were used on10-fold cross validation to improve the malware detection 

accuracy. The proposed work has a good accuracy of 98.27 % with ensemble of parallel 

classifiers, demonstrating the power of ensemble methods in handling feature diversity and 

complex malware behaviors. 
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 Wang et al. (2023) developed a Mobile Malware Detection (MMD) framework 

using network traffic analysis. The pro- posed framework collected the network traffic data 

from mobile apps and extracts the hypertext transfer protocol (HTTP) request and 

transmission control protocol (TCP) flow features for learning malicious behaviours. The 

categorization of the network traffic features into malware or benign is done by C4.5 

classifier that obtained the 97.89 % detection rate. 

 Bahtiyar et al. (2023) focused on advanced malware like Stuxnet, using 

multidimensional features and regression-based prediction. The detection process is carried 

out to find the correlation between conventional malware and advances malware using five 

features of windows API calls. The regression models were applied to predict the advanced 

malware on defined features. The proposed model was not evaluated using standard metrics 

such as accuracy, precision and recall of any AI models, although their model lacked 

thorough evaluation metrics like precision or recall. 

 Karbab & Debbabi (2021) introduced the MalDy framework which applies natural 

language processing (NLP) with Bag of Words (BoW) to extract features from behavioral 

reports. In this study, ArguMent-Hashing-based API correlation fast Analysis algorithm 

was used. This study has used hybrid of RF and BiLSTM models for classification that 

achieved 96.7 % accuracy. This work did not performed the multiclass classification and 

evaluated with small amount of dataset. 

 Han et al. (2020) presented MalInsight, a profiling-based system that categorizes 

malware behaviors into basic, low, and high- level traits. It achieved 99.7% malware 

detection accuracy and 94.2% family classification accuracy, indicating strong performance 

even on obfuscated malware. 

 Roy et al. (2022) designed a model using feature aggregation and non-negative 

matrix factorization (NMF) with SVM for malware detection. This work extracts the 

vulnerable features of the application, then applied the aggregation method to count the 

occurrence of the features. After that, to find and reduce the optimal features, a ML-based 

techniques called Non-negative Matrix Factorization (NMF) was applied. Their method 

achieved 93.35% accuracy without feature reduction, and 88.72% with NMF, highlighting 

trade-offs between dimensionality. 

 Chimeleze et al. (2022) introduced BFEDroid, which uses back- ward, forward, and 

exhaustive subset selection to reduce features, resulting in a 99% detection rate with 

minimal memory usage and performance. 

 Wu et al. (2022) proposed DroidRL, a reinforcement learning- based feature 

selection method (DDQN) that reduced feature dimensions to 24 static features, yielding 

95.6% accuracy with RF classifiers. 
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 Mahindru & Sangal (2022) presented FSDroid, which com- bines filter and wrapper 

techniques to optimize features. Their model demonstrated efficient malware detection 

across various feature sets. 

 Alazzam et al. (2023) applied a binary Owl optimizer and RF for classification, 

achieving 98.84% on the Drebin dataset, though with a notably poor F1-score. 

 Hossain et al. (2023) used Particle Swarm Optimization (PSO) and achieved 

81.58% accuracy in detecting Android ransomware using RF and SVM. 

 Chemmakha et al. (2023) utilized embedded methods (Light- GBM and RF) for 

feature selection, reporting over 99% accuracy but lacking in detailed evaluation metrics 

such as recall and F1-score. 

 Soundrapandian & Subbiah (2022) designed a lightweight ML framework using 

evolutionary feature selection and Mahalanobis distance metric. Their model achieved 

95.69% ac- curacy but lacked robustness against obfuscated malware. 

 Ghazi & Raghava (2023) introduced the Mayfly Algorithm (MA) as a wrapper-

based feature optimizer. Evaluated with RF, SVM, and KNN on CIC-MalMem-2022, the 

model achieved 99.99% accuracy. 

 Ceschin et al. (2023) examined the impact of concept drift using Adaptive Random 

Forest (ARF) and SGD on the Andro- Zoo and Drebin datasets. They demonstrated that 

SGD maintained 99% accuracy even under evolving malware behavior. AlOmari et al. 

(2023) compared several ML algorithms using dynamic features extracted from 

CICMalDroid2020. Light-GBM emerged as the best performer with 92.72% accuracy. 

Gracia et al. (2021) used transfer learning alongside traditional ML models like RF, KNN, 

and XGB to address concept drift, reaching a Matthews correlation coefficient (MCC) of 

97.75%. Surendran et al. (2022) proposed a hybrid detection framework using Tree-

Augmented Naive Bayes (TAN), combining static and dynamic features. Their model 

achieved 99% accuracy, effectively capturing cross-feature relationships. However, its 

limited comparison with other baseline classifiers and lack of scalability testing restrict 

broader applicability. 

 Shhadat et al. (2021) Using static features, the authors evaluated Random Forest 

and Decision Tree classifiers on both binary and multiclass classification tasks. The model 

reached up to 98.2% accuracy, indicating strong baseline performance. Nevertheless, the 

framework lacked adversarial testing and was focused on static analysis only. 

 Usman et al. (2021) approach leveraged decision trees to analyze network-level 

indicators like IP address behavior and log activity for forensic detection. s. The proposed 

model follows hybrid approach based on dynamic analysis using cuckoo sandbox. The DT 

is used for detection purpose that achieved 93.5 % accuracy. 
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 Bhusal & Rastogi (2022) provided meta-analysis highlighted how classical ML 

models like SVM and RF can be vulnerable to adversarial feature manipulation. While 

offering no detection model, it emphasized the critical need for robust model hardening in 

malware detection pipelines. 

 Yerima et al. (2016) using Naive Bayes on static permissions and API calls, this 

early study demonstrated effective zero- day malware detection. The methodology showed 

strong performance against known samples. However, it struggled with highly obfuscated 

malware and lacked behavioral insight. 

 Rathore et al. (2019) pre-processed Android malware data using clustering before 

applying RF, SVM, and DT. This hybrid method improved RF performance to 98.34%. 

However, only static features were used, limiting dynamic behavioral coverage. 

 Panman de Wit et al. (2021) work used RF, KNN, and AdaBoost on device-level 

indicators like CPU, memory, and battery usage for malware detection. Despite achieving 

low false positive rates, the F1-score was only 0.73, reflecting moderate detection power in 

mobile environments. 

 Shakya & Dave (2022) leveraged system-call logs and applied Decision Trees and 

KNN for classification. Decision Trees performed best for malware family classification. 

The main challenge was adapting the model for real-time or resource-limited devices. 

 Liu et al. (2025) conducted a benchmarking study comparing ML and DL models 

across multiple Android malware datasets. Their findings revealed that traditional ML 

models often match or outperform DL in practical settings. The downside is DL may excel 

only in very large-scale cases. 

 Ghorab et al. (2024) paper benchmarked several classical ML models and graph 

representations on Android malware datasets. The results varied by model and feature type, 

affirming ML’s strength under resource constraints. However, temporal behavior modeling 

was not deeply explored. 

 Wahad et al. (2024) demonstrated that selecting a sub-set of meaningful 

permissions using Recursive Feature Elimination (RFE) and SHAP values significantly 

improved detection accuracy while reducing feature space, achieving an F1-score above 

0.99. Gupta et al. (2023) leveraged rough set theory to eliminate redundant permission 

features and prioritize those most indicative of malicious behavior. 

 Odat & Yaseen (2023) constructed a co-occurrence matrix of permissions and API 

calls and utilized FP-growth algorithms to identify strong feature associations. Their 

method achieved a detection rate of 98%, outperforming permission- only models. 

 Mehtab et al. (2022) presented AdDroid, a rule-based engine using a handcrafted 

feature set and an Adaboost-based ensemble classifier. The system reached 99.11% 

accuracy. Almarshad et al. (2024) addressed the data scarcity problem using a Siamese 
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network for few-shot learning. By coupling this with conventional classifiers, they achieved 

98.9% accuracy on the Drebin dataset, illustrating its applicability in low- data scenarios. 

 Alani & Awad (2024) introduced PAIRED, a framework that combined SHAP 

values and recursive elimination to identify the most impactful permission features. The 

model achieved accuracy above 98% using tree- based ensemble classifiers. 

 Alkahtani & Aldhyani (2024) employed correlation- based feature filtering 

followed by classification using SVM, LSTM, and CNN-LSTM models. 

 Xiaofeng et al. (2019) proposed MDS that combines the API sequences and 

statistics features. In this study, ArguMent-Hashing-based API correlation fast Analysis 

algorithm was used. This study has used hybrid of RF and BiLSTM models for 

classification that achieved 96.7 % accuracy. This work did not performed multiclass 

classification and evaluated with small amount of dataset. 

 Seraj et al. (2023) designed a MVDroid framework to identify the malware based 

virtual private networks (VPN) using the optimized deep learning. This works the used 

permission based malicious android VPN dataset for performance testing of the proposed 

framework. The average accuracy of proposed model is 92.81 %. However, the 

performance of the proposed MV- Droid can be improved by using feature selection 

techniques and other advanced DL models. 

 Sahin et al. (2022) proposed multiple linear regression-based AMD model on 

permission features. To boost the performance of the proposed model, begging (majority 

voting) ensembles learning techniques employed. The presented work used the four 

different android malware dataset samples. However, very limited samples of malware and 

benign files have been included in this dataset that may reduce the robustness and 

scalability of new malware detection. 

 Dabas et al. (2023) designed the ML based windows malware detection using 

hybrid feature selection techniques. The presented model considered only three types of 

API calls (usage, frequency and sequence) features. This model is evaluated on individual 

API call set and integrated API calls feature set. The obtained results by integrated feature 

set achieved around 99 % accuracy which is better than individual feature set. However, the 

proposed model employed the traditional feature reduction techniques on limited API calls 

features that reduces generalization capability and scalability of the model. 

 Mat et al. (2022) introduced an AMD system using Bayesian probability method. 

The proposed system was tested using Androzoo and Drebin datasets. To select optimal 

feature subset, IG and chi-square were applied. The obtained accuracy on reduces features 

is 91.1 overall accuracy of the proposed model is lower than can be improved using latest 

metaheuristic optimization techniques 
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4.1 Benchmark datasets overview 

 The effectiveness of machine learning models for Android malware detection is 

heavily influenced by the dataset used for training and evaluation. A robust dataset should 

include a diverse set of malware samples, represent real-world scenarios, and provide 

reliable labels and features. Several benchmark and custom datasets have been widely 

utilized in the literature, each offering unique properties and challenges. 

 One of the most widely cited datasets is Drebin, which contains over 5,500 malware 

samples and around 123,000 benign applications. It provides static features extracted from 

Android application packages (APKs), including permissions, API calls, and manifest 

entries. Drebin has become a standard benchmark in many studies due to its size, structure, 

and accessibility (Ghazi & Raghava, 2023; Liu et al., 2025; Almarshad et al., 2024). 

 

Table 1: Summary of Android Malware Detection Studies using ML Techniques 

 

Author(s) Dataset Used ML Model Used Accuracy 

Garg & Baliyan (2024) Unknown 
PART, RIDOR, SVM, 

MLP (Ensemble) 
98.27% 

Wang et al. (2023) Network Traffic C4.5 97.89% 

Bahtiyar et al. (2023) Windows API features Regression N/A 

Karbab & Debbabi (2021) Behavioral logs RF + BiLSTM 96.7% 

Han et al. (2020) Custom (Behavioral traits) Random Forest 99.7% 

Roy et al. (2022) Unknown SVM + NMF 
93.35% / 

88.72% 

Chimeleze et al. (2022) Unknown Subset Selection 99% 

Wu et al. (2022) Static Features DDQN + RF 95.6% 

Alazzam et al. (2023) Drebin Owl Optimizer + RF 98.84% 

Hossain et al. (2023) Android Ransomware PSO + RF, SVM 81.58% 

Chemmakha et al. (2023) Unknown LightGBM, RF 99% 

Soundrapandian & Subbiah 

(2022) 
Unknown Evo FS + Mahalanobis 95.69% 

Ghazi & Raghava (2023) 
CIC-MalMem-202 & 

drebin 
Mayfly + RF, SVM, KNN 99.99% 

Ceschin et al. (2023) AndroZoo, Drebin ARF, SGD 99% 

AlOmari et al. (2023) CICMalDroid2020 LightGBM 92.72% 

Gracia et al. (2021) Unknown 
Transfer Learning + RF, 

KNN, XGB 
MCC: 97.75% 

Surendran et al. (2022) Hybrid (Static + Dynamic) TAN 99% 

Shhadat et al. (2021) Static Features RF, DT 98.2% 

Usman et al. (2021) Cuckoo Sandbox DT 93.5% 
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Bhusal & Rastogi (2022) N/A 
SVM, RF (robustness 

analysis) 
N/A 

Rathore et al. (2019) Unknown Clustering + RF, SVM, DT 98.34% 

Panman de Wit et al. (2021) Device-level stats RF, KNN, AdaBoost F1: 0.73 

Shakya & Dave (2022) System Call Traces DT, KNN 
Family-level 

detection 

Liu et al. (2025) Multiple Malware Datasets ML vs DL Benchmarking N/A 

Ghorab et al. (2024) Android Malware Sets Various ML models Varies 

Wahad et al. (2024) Permissions RFE + SHAP + Classifier 0.99 

Gupta et al. (2023) Permissions Rough Set Theory N/A 

Odat & Yaseen (2023) Permissions + API Calls FP-Growth 98% 

Mehtab et al. (2022) Unknown Adaboost (Rule-Based) 99.11% 

Almarshad et al. (2024) Drebin Siamese + Traditional ML 98.9% 

Alani & Awad (2024) Permissions 
SHAP + RFE + Ensemble 

Trees 
98% 

Xiaofeng et al. (2019) Unknown RF + BiLSTM 96.7% 

Seraj et al. (2023) VPN Malware Dataset Optimized DL 92.81% 

Dabas et al. (2023) Windows API Calls Hybrid FS + ML 99% 

Mat et al. (2022) Androzoo, Drebin Bayesian + IG, Chi-square 91.1% 

 

 Another important resource is AndroZoo, a large-scale and continuously updated 

dataset of millions of Android apps collected from various sources, including Google Play 

and third-party markets. It offers raw APK files, metadata, and behavioral information, 

which can be used for both static and dynamic analysis. AndroZoo enables studies on 

malware evolution and concept drift, as demonstrated in works by Ceschin et al. (2023) and 

Ghorab et al. (2024). 

 The CICMalDroid2020 dataset provides hybrid features derived from both static 

and dynamic analysis of Android apps. It includes behavioral logs such as API calls, system 

calls, and network activity, making it suitable for evaluating detection frameworks that 

combine multiple types of analysis. This dataset was employed in studies like AlOmari et 

al. (2023) and Surendran et al. (2022) to test hybrid detection models. 

 Additionally, the CIC-MalMem-2022 dataset—though originally designed for 

Windows malware—has been adapted in some Android malware studies, particularly for 

evaluating transfer learning or behavior-based classifiers. It includes rich dynamic features 

such as system behavior logs and memory consumption data (Ghazi & Raghava, 2023). 

 Researchers also use custom-built datasets, often generated using tools like 

DroidBox, Cuckoo Sandbox, MobSF, or other dynamic analysis frameworks. These 

datasets are typically tailored for specific objectives such as ransomware detection (Hossain 

et al., 2023), VPN abuse (Seraj et al., 2023), or permission misuse (Wahad et al., 2024). 
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While they offer the advantage of capturing up-to-date malware patterns, custom datasets 

often lack standardization and reproducibility across studies. Despite their usefulness, 

current datasets still present several limitations. There is a lack of unified labeling 

standards, diverse malware family representation, and balanced class distributions. 

Additionally, many datasets emphasize static features while neglecting real-time behavioral 

attributes. These limitations underscore the need for well-maintained benchmark datasets 

that support hybrid analysis, adversarial testing, and longitudinal studies. 

 

4.2 Discussion and key finding 

 Among the classical machine learning algorithms studied for Android malware 

detection, Random Forest (RF) consistently emerged as a top performer across multiple 

datasets and feature combinations. Its ensemble nature and ability to handle high-

dimensional feature spaces make it suitable for complex and imbalanced malware datasets. 

Studies like those by Ghazi & Raghava (2023), Chimeleze et al. (2022), and Han et al. 

(2020) reported detection accuracies of over 99% using RF in combination with optimized 

features. Support Vector Machines (SVM) also demonstrated strong performance, 

particularly in binar classification tasks, due to their robustness against over-fitting and 

ability to handle non-linear decision boundaries. Additionally, hybrid approaches that use 

ensemble models (e.g., combining PART, RIDOR, and MLP (Garg & Baliyan, 2024)) and 

optimization-driven feature selection (e.g., Mayfly, Particle Swarm Optimization, and Owl 

optimizer) tend to outperform standalone classifiers. These combinations of- ten balance 

accuracy, interpretability, and computational efficiency, which is especially critical for 

deployment on mobile or embedded systems. 

 Common Feature Types Used: The most widely used features in the literature can 

be broadly categorized into static, dynamic, and hybrid types. Static features—such as 

requested permissions, API calls, manifest entries, op- code sequences, and control-flow 

graphs—are extracted without executing the application and are prevalent due to their low 

computational cost. For example, permission-based detection remains popular, as shown in 

studies by Yerima et al. (2016) and Wahad et al. (2024). Dynamic features, including 

system calls, network traffic patterns, battery consumption, and runtime behaviors, provide 

deeper insights into application behavior, especially for detecting obfuscated or fileless 

malware. These are used in models like MalInsight (Han et al., 2020) and BFEDroid 

(Chimeleze et al.,). Recently, hybrid feature sets, which combine static and dynamic 

attributes, have gained traction for their robustness and broader coverage, as demonstrated 

in the work by Surendran et al. (2022). Feature selection techniques—such as Information 

Gain, Chi-square, Recursive Feature Elimination (RFE), SHAP values, and metaheuristic 
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algorithms—play a critical role in eliminating redundant information and enhancing model 

accuracy and speed. 

 Trends Observed Across Years: Over the years, there has been a notable evolution 

in the direction and sophistication of Android malware detection research. Early studies 

(pre-2018) focused primarily on static analysis using basic classifiers like Decision Trees 

and Naive Bayes. With the introduction of datasets like Drebin and AndroZoo, more 

complex models and larger-scale experiments became feasible. Between 2019 and 2021, 

ensemble methods and optimization-driven feature se- lection began gaining prominence, 

reflecting a shift toward improving robustness and scalability. More recent studies from 

2022 to 2024 highlight an increasing focus on hybrid analysis, adversarial robustness, and 

concept drift adaptation. For example, adaptive models like ARF (Adaptive Random Forest) 

(Ceschin et al., 2023) and transfer learning approaches (Gracia et al., 2021) address the 

evolving nature of malware. Additionally, researchers have started exploring real-time and 

lightweight deployment models suitable for mobile environments, as seen in 

Soundrapandian & Subbiah’s work (2022). However, despite high reported accuracies, the 

lack of standardized benchmarks and consistent evaluation metrics still hampers a fair 

comparison across studies. 

 

4.3 Gaps in literature 

 While the literature presents strong evidence for ML-based Android malware 

detection, several gaps remain: 

• Most models focus on binary classification (malicious vs. benign), neglecting multi-

class classification needed for malware family detection. 

• Several studies overlook real-time detection capabilities and scalability, which are 

essential for deployment in live Android environments 

• Evaluation metrics like F1-score and recall are inconsistently reported, limiting 

comparative analysis. 

• Few studies assess models under adversarial conditions, such as obfuscation or concept 

drift. 

 These gaps highlight the need for further research into interpretable, lightweight, 

and resilient ML models that can generalize well across diverse datasets and malware types. 
 

5.0 Conclusion 
 

 The increasing complexity and volume of Android malware have outpaced the 

capabilities of traditional detection systems, necessitating the adoption of intelligent, 

adaptive methods. This review systematically examined a wide spectrum of machine 

learning (ML) techniques applied to Android malware detection. By excluding deep 
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learning models, the focus remained on lightweight, interpretable, and computationally 

efficient ML approaches such as Random Forest, Support Vector Machines, Naive Bayes, 

k-Nearest Neighbors, and Decision Trees. 

 The survey covered core components of ML-based detection pipelines, including 

static and dynamic malware analysis techniques, feature extraction and selection strategies, 

commonly used datasets, and evaluation metrics. Numerous studies demonstrated high 

accuracy and robustness using classical ML models, especially when combined with 

optimized features and ensemble learning. However, it was also observed that many of 

these approaches were developed and tested under controlled conditions and did not always 

generalize well to real-world, evolving malware threats. The growing complexity and 

volume of Android malware have surpassed the capabilities of conventional detection 

systems, making it essential to implement intelligent, adaptive strategies. This review 

thoroughly analyzed a broad range of machine learning (ML) techniques utilized for 

Android malware detection. By omitting deep learning models, the emphasis was placed on 

lightweight, interpretable, and computationally efficient ML methods such as Random 

Forest, Support Vector Machines, Naive Bayes, k-Nearest Neighbors, and Decision Trees. 

 

6.0 Future Recommendations 

 

 To enhance the effectiveness and applicability of ML-based Android malware 

detection, the following directions are recommended for future research: 

• Focus on multiclass and hierarchical classification: Most current approaches focus on 

simple malicious-vs-benign classification. Future work should address malware family 

classification, as well as hierarchical behavioral categorization, which provides deeper 

insights into malware capabilities. 

• Integrate hybrid analysis for enhanced feature coverage: Combining static and 

dynamic features provides a more comprehensive view of application behavior. Hybrid 

models leveraging both analysis types can significantly reduce false positives and 

improve resilience to evasion. 

• Promote real-time and on-device ML solutions: Future research should prioritize the 

development of resource-efficient ML models capable of running in real time on mobile 

devices. Lightweight classifiers like Decision Trees and optimized versions of SVM or 

RF may be more suitable than complex models. 

• Use semi-supervised or active learning: Given the challenges of obtaining labeled 

malware data, semi-supervised, active, or federated learning approaches could help 

train models with fewer labeled samples while maintaining high accuracy. 
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