
COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies

Volume 5, Issue 1, Jan-Jun 2025, pp. 84-106

DOI: 10.17492/computology.v5i1.2506

https://www.journalpressindia.com/cjacsit

© 2025 Journal Press India

A Survey of Classical and Hybrid Machine Learning Models for Android Malware

Detection: Techniques, Taxonomies, Challenges, and Future Research Directions

Ankit Singh*

ABSTRACT

The swift expansion of Android devices and ap- plications has greatly enlarged the attack surface for

cyber threats, especially malware. Conventional signature-based detection methods have become

inadequate because of the rise of advanced evasion strategies like obfuscation, polymorphism, and

encryption. In reaction to these changing threats, machine learning (ML) has received significant

focus as an effective method for creating intelligent and adaptable malware detection systems. This

study offers an extensive examination of the latest progress in ML techniques for detecting Android

malware, deliberately omitting deep learning methods to concentrate on traditional and ensemble

ML models. The research starts by exploring different forms of malware and the methods used to

avoid detection, then presents a summary of malware analysis approaches such as static, dynamic,

and hybrid analysis. A significant focus is placed on feature engineering techniques covering both

extraction and selection since they are vital for enhancing the accuracy and efficiency of ML

classifiers. The assessment classifies and examines frequently employed ML algorithms like Random

Forests, Support Vector Machines, Decision Trees, Naive Bayes, and k-Nearest Neighbors,

emphasizing their usage scenarios, advantages, drawbacks, and documented effectiveness on

standard datasets. Additionally, we examine the difficulties present in existing ML-driven methods,

such as class imbalance, dataset diversity, overfitting, and insufficient generalization to new

malware types. This document additionally highlights future research avenues, including the

incorporation of hybrid analysis methods, explainable ML models, and adaptable learning strategies

to tackle concept shift and adversarial interference. This review seeks to assist researchers and

practitioners in creating effective, scalable, and robust ML-based solutions for detecting Android

malware by synthesizing the current body of work.

Keywords: Android malware; Machine learning; Static analysis; Dynamic analysis; Hybrid

analysis; Malware detection; Ensemble learning; Feature selection; Mobile security; Adversarial

robustness; Classification algorithms; Cybersecurity.

1.0 Introduction

 The extensive use of Android-based mobile devices, propelled by their open architecture

*Student, Department of Computer Engineering, NIT-Kurukshetra, Haryana, India

(E-mail: emailto.ankit123@gmail.com)

https://www.journalpressindia.com/cjacsit
https://www.journalpressindia.com/computology-journal-of-applied-computer-science-and-intelligent-technologies/doi/10.17492/computology.v4i2.2401
https://www.journalpressindia.com/cjacsit

A Survey of Classical and Hybrid Machine Learning Models for Android Malware

Detection: Techniques, Taxonomies, Challenges, and Future Research Directions

85

and user-friendly characteristics, has rendered them a prime target for cybercriminals. With

millions of applications accessible for download from both official and unofficial sources,

the Android ecosystem has experienced a notable increase in malicious software, commonly

referred to as malware. The complexity and evasiveness of malware attacks have escalated,

presenting significant risks to user privacy, financial security, and the overall integrity of

systems. Malware encompasses various types, including viruses, worms, trojans,

ransomware, spyware, adware, and rootkits. These harmful programs are engineered to

execute unauthorized actions, such as data theft, surveillance, unauthorized transactions, or

the disabling of system functionalities. The sophistication of contemporary malware is

further augmented by the application of evasion techniques like obfuscation, encryption,

code packing, polymorphism, and metamorphism. These strategies are meticulously

designed to circumvent conventional detection methods, rendering static signature-based

antivirus solutions largely ineffective against unknown or zero- day vulnerabilities.

 Traditional malware detection methods predominantly depend on both static and

dynamic analysis. Static analysis entails examining application components, including

permissions, API calls, and manifest files, without executing the application. Although this

approach is efficient, it faces challenges in identifying malware that utilizes code

obfuscation or encryption. Conversely, dynamic analysis monitors the behavior of

applications in controlled settings (such as sandboxes) during their runtime. While it is

more effective at revealing concealed malicious activities, dynamic analysis is resource-

intensive and vulnerable to anti-analysis strategies employed by malware to identify and

avoid virtualized environments.

 Figure 1 Illustrates the fluctuation and overall increase in mobile malware attacks

over a decade is noteworthy. The initial years (2015–2019) indicate a steady rise,

culminating in 2018 with 10.5 million attacks. A significant decrease was observed from

2020 to 2022, likely attributed to heightened security awareness and changes in mobile

usage patterns due to the pandemic. Nevertheless, in 2023 and 2024, there was a remarkable

spike, with reported attacks soaring to 33.8 million and 33.3 million respectively,

underscoring the resurgence and advancing complexity of mobile malware, particularly

through aggressive adware, ransomware, and banking trojans. In ma- chine learning-based

malware detection systems, the process generally commences with feature extraction from

Android application packages (APKs). Typical features encompass requested permissions,

intent filters, utilized APIs, opcode sequences, network behaviors, and system calls. These

features are subsequently refined using feature selection techniques such as Information

Gain, Chi-square, Recursive Feature Elimination (RFE), or optimization-based methods like

Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Effective feature

86 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

selection is vital for enhancing classification accuracy, minimizing overfitting, and reducing

computational demands.

Figure 1: Year Wise Depiction in Number of Malware Attacks

Figure 2: Diagram for Malware Detection using ML

A Survey of Classical and Hybrid Machine Learning Models for Android Malware

Detection: Techniques, Taxonomies, Challenges, and Future Research Directions

87

 Figure 2 outlines a detailed procedure for identifying Android malware through

classical machine learning methods. It starts with the gathering of both benign and

malicious APK files, which are then transformed into a structured dataset (for instance, in

CSV or PNG format). Subsequently, the system conducts feature extraction and

engineering, converting raw application data (including permissions, opcodes, or network

logs) into attributes that can be processed by machines. Following this, preprocessing steps

(such as normalization or encoding) and feature selection are carried out, eliminating

redundant or noisy features to enhance model efficiency. The refined dataset is

subsequently input into a machine learning classification algorithm such as Random Forest,

SVM, or Naive Bayes which categorizes each application as either malicious or benign.

This systematic approach guaran- tees adaptability, accuracy, and interpretability while

ensuring lightweight performance that is appropriate for mobile environments.

 This paper provides an extensive review of Android malware detection techniques

that rely exclusively on machine learning approaches. It encompasses the entire detection

pipeline—from feature extraction and selection to the de- sign and evaluation of classifiers.

By omitting deep learning techniques, which typically demand greater computational

resources and are often less interpretable, this review highlights lightweight, scalable, and

interpretable machine learning models that are suitable for real-time applications and

resource- constrained settings such as smartphones and edge devices.

 The objective of this review is to consolidate current research, pinpoint

performance trends and constraints, and delineate prospective research avenues. By

conducting a comparative analysis of machine learning algorithms, feature selection

methods, and datasets referenced in the literature, this paper seeks to furnish researchers and

practitioners with a strong basis for developing resilient and effective machine learning-

based Android malware detection systems.

2.0 Motivation and Problem Statement

 Despite the promise of machine learning, current malware detection systems

encounter numerous obstacles. These challenges encompass imbalanced datasets, high-

dimensional feature spaces, insufficient generalization to novel or obfuscated malware, and

limited capabilities for multiclass classification. Furthermore, many methodologies are not

tailored for real- time or on-device execution, and few tackle adversarial evasion strategies.

There is a pressing need for a comprehensive review that specifically examines traditional

machine learning models excluding deep learning to assess their strengths, weaknesses, and

future prospects in developing robust Android malware detection systems. The motivation

of this paper is to create an efficient An- droid malware detection system utilizing classical

88 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

machine learning techniques. As mobile malware becomes increasingly sophisticated and

traditional signature-based methods show limitations, there is an escalating demand for

intelligent, adaptive, and lightweight detection strategies. Machine learning provides the

capability to recognize malicious behaviors based on learned patterns from application

features, rendering it particularly suitable for real-time detection on devices with limited

resources. This paper intends to investigate and assess ML-based solutions that achieve a

balance between accuracy, efficiency, and interpretability for practical application in

Android environments.

3.0 Background of Malware

3.1 Definition and purpose of malware

 Malware, short for malicious software, refers to any program or code intentionally

crafted to harm, exploit, or disable computers, mobile devices, or networks. In the context

of Android systems, malware is often disguised as legitimate apps, exploiting the operating

system’s open nature to bypass security protocols and gain unauthorized access to sensitive

data. The ultimate goal of malware may range from data theft, unauthorized surveillance,

and financial fraud, to complete system disruption. Unlike ordinary software bugs, malware

is purposefully designed with malicious intent. Once installed, it can manipulate core

system files, monitor user activity, modify settings, or open backdoors for remote attackers.

With mobile devices becoming central to online banking, communication, and

authentication, Android malware now represents a major cybersecurity concern globally.

3.2 Evolution of malware

 The history of malware dates back to the 1980s, when the first known PC virus,

Brain, emerged. This early form of malware demonstrated how software could replicate and

spread across systems. Over the years, malware has evolved in both complexity and

delivery mechanisms. Initially spread via floppy disks or email attachments, modern

malware exploits network vulnerabilities, application permissions, and user behavior to

propagate. In the mobile domain, especially Android, malware growth has been

exponential. Factors contributing to this include:

• Widespread use of third-party app stores.

• Lack of stringent app vetting in unofficial sources.

• Android’s flexible permission model.

• Inconsistent OS updates across devices.

Attackers now employ advanced obfuscation techniques to create dynamic, stealthy, and

often polymorphic malware that is capable of evading traditional detection tools.

A Survey of Classical and Hybrid Machine Learning Models for Android Malware

Detection: Techniques, Taxonomies, Challenges, and Future Research Directions

89

3.3 Common types of malware in android ecosystem

 Android malware exists in various forms, each designed to exploit a different aspect

of system vulnerability. Some of the most common types include:

• Viruses: Programs that attach themselves to legitimate files or applications, replicating

and spreading when the host is executed.

• Worms: Self-replicating malware that spreads across devices or networks without user

intervention.

• Trojans: Malicious code hidden inside seemingly harm- less apps, often requiring the

user to grant unnecessary permissions.

• Ransomware: Locks or encrypts user data and demands payment for restoration.

• Spyware: Covertly gathers sensitive user data, such as login credentials, call logs, GPS

locations, and messages.

• Adware: Delivers unwanted advertisements, often degrading user experience and acting

as a vector for more dangerous malware.

• Rootkits: Provide attackers with privileged access to systems while hiding their

presence.

• Keyloggers: Capture user keystrokes to extract passwords or sensitive input.

• Fileless malware: Operates in memory without writing files to disk, making it harder to

detect using traditional antivirus tools.

3.4 Malware evasion techniques

 Modern malware is rarely straightforward. Attackers increasingly use evasion

tactics to avoid detection during both static and dynamic analysis. These include:

• Obfuscation: Renaming variables and functions, inserting junk code, or encrypting

payloads to confuse static scanners.

• Polymorphism: Generating new versions of malware with different signatures but

similar functionality, often at runtime.

• Metamorphism: Changing the entire code structure while preserving behavior,

rendering signature-based detection useless.

• Packing and Encryption: Wrapping malicious code inside encrypted containers or

packers to mask the executable’s true behavior.

Such techniques complicate the detection process and demand adaptive, intelligent systems

that can learn patterns beyond static rules—an area where machine learning excels.

3.5 The need for intelligent malware detection

 As Android malware becomes more evasive and polymorphic, traditional security

methods such as signature-based scanning and rule-based detection have proven inadequate.

90 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

These systems depend on prior knowledge of known malware, making them ineffective

against zero-day exploits or unseen variants. Furthermore, they cannot adapt dynamically to

evolving malware behaviors. In contrast, machine learning provides a data-driven approach

capable of:

• Identifying malicious behavior based on patterns and statistical anomalies.

• Learning from both labeled and unlabeled data and adapting to new malware types with

model retraining.

• Supporting lightweight implementations suitable for mobile and embedded devices.

 This justifies the increasing research focus on ML-powered detection systems,

which can analyze app behavior, permissions, and API usage to distinguish benign apps

from malicious ones even when traditional indicators are absent.

3.6 Process of malware investigation

 Effective detection and mitigation of malware starts with a comprehensive

understanding of its operation, propagation, and interaction with the host system. The

process of investigating malware—commonly referred to as malware analysis seeks to

reveal the internal architecture, functional logic, and behavioral patterns of potentially

harmful applications. This knowledge is essential for the development of machine learning

(ML)-based detection systems, which depend significantly on feature-rich, labeled data

obtained during these analyses. In Android environments, malware analysis is typically

conducted through three complementary methods: static analysis, dynamic analysis, and

hybrid analysis. Each method offers distinct advantages and challenges in the detection and

characterization of malicious behavior.

3.6.1 Static analysis

 Static analysis entails the examination of an Android application package (APK)

without running it. Analysts, along with automated tools, scrutinize the internal structure of

the application—such as manifest files, Dalvik bytecode (classes.dex), and resources—to

detect any suspicious patterns.

 Key static features often extracted for ML-based malware detection include

Requested permissions, API call sequences, Control flow graphs (CFGs), Opcode

sequences, Intent filters, Hardcoded URLs or IP addresses, Certificate metadata. In the

diagram in Figure 3 the process of static malware analysis is illustrated, where APK files

are evaluated without execution through the use of disassemblers or analysis tools. The

focus of feature extraction is on n-grams, opcodes, string patterns, hash values, and PE file

metadata. The data that is extracted is represented in various formats, including matrices

A Survey of Classical and Hybrid Machine Learning Models for Android Malware

Detection: Techniques, Taxonomies, Challenges, and Future Research Directions

91

and graphs, and subsequently provided to detection algorithms—ranging from rule-based

systems to machine learning and deep learning models—for the purpose of classification.

Figure 3: Diagram of Static Analysis Workflow (Santosh et al., 2024)

92 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

Figure 4: Diagram of Dynamic Analysis Workflow (Santosh et al., 2024)

3.6.2 Dynamic analysis

 Dynamic analysis, on the other hand, involves the execution of the application

within a con- trolled, sandboxed environment (for instance, Cuckoo Sandbox or DroidBox)

while monitoring its behavior during runtime. This approach aids in revealing malicious

activities that may only be activated during execution. Commonly monitored behaviors

include Network activity (e.g., unauthorized server communication), File system changes,

A Survey of Classical and Hybrid Machine Learning Models for Android Malware

Detection: Techniques, Taxonomies, Challenges, and Future Research Directions

93

System API usage, Battery and memory consumption, Inter-process communication (IPC)

events The diagram in Figure 4 delineates the workflow of dynamic malware analysis,

where behavior is monitored in either real or virtual environments utilizing tools such as

Wireshark and Cuckoo Sandbox. The primary dynamic features that are extracted include

file operations, registry modifications, network activity, and system calls. These features are

organized into formats like matrices, graphs, or trees and are subsequently input into

detection systems employing traditional, machine learning, or deep learning methodologies.

3.6.3 Hybrid analysis

 To overcome the shortcomings of both static and dynamic analysis, researchers are

increasingly utilizing hybrid analysis, which integrates insights from both methodologies.

This strategy seeks to deliver a thorough understanding of an application’s behavior by

linking its code structure with its runtime execution. For example, a hybrid framework may

initially extract permissions and opcodes from APK files, followed by monitoring the actual

API calls made during execution. Features derived from both sources can be combined and

input into machine learning classifiers such as Random Forests or Support Vector Machines

to attain enhanced accuracy and robustness.

4.0 Literature Review

 In recent years, machine learning (ML) has become a vital method in the detection

of Android malware due to its ability to identify intricate patterns, adapt to changing threats,

and provide automated analysis. The current body of literature can be generally divided into

three categories:

• ML-based malware detection models

• feature selection and optimization techniques

• comparative analysis based on datasets and classifiers

 This review explicitly excludes deep learning models to concentrate on

interpretable and resource-efficient ML methods.

 Garg & Baliyan (2024) proposed an ensemble ML model combining PART,

RIDOR, SVM, and MLP classifiers to detect zero-day malware. The parallel ML classifiers

like Pruning Rule-based Classification Tree (PART), Ripple Down Rule Learner (RIDOR),

SVM and MLP were used on10-fold cross validation to improve the malware detection

accuracy. The proposed work has a good accuracy of 98.27 % with ensemble of parallel

classifiers, demonstrating the power of ensemble methods in handling feature diversity and

complex malware behaviors.

94 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

 Wang et al. (2023) developed a Mobile Malware Detection (MMD) framework

using network traffic analysis. The pro- posed framework collected the network traffic data

from mobile apps and extracts the hypertext transfer protocol (HTTP) request and

transmission control protocol (TCP) flow features for learning malicious behaviours. The

categorization of the network traffic features into malware or benign is done by C4.5

classifier that obtained the 97.89 % detection rate.

 Bahtiyar et al. (2023) focused on advanced malware like Stuxnet, using

multidimensional features and regression-based prediction. The detection process is carried

out to find the correlation between conventional malware and advances malware using five

features of windows API calls. The regression models were applied to predict the advanced

malware on defined features. The proposed model was not evaluated using standard metrics

such as accuracy, precision and recall of any AI models, although their model lacked

thorough evaluation metrics like precision or recall.

 Karbab & Debbabi (2021) introduced the MalDy framework which applies natural

language processing (NLP) with Bag of Words (BoW) to extract features from behavioral

reports. In this study, ArguMent-Hashing-based API correlation fast Analysis algorithm

was used. This study has used hybrid of RF and BiLSTM models for classification that

achieved 96.7 % accuracy. This work did not performed the multiclass classification and

evaluated with small amount of dataset.

 Han et al. (2020) presented MalInsight, a profiling-based system that categorizes

malware behaviors into basic, low, and high- level traits. It achieved 99.7% malware

detection accuracy and 94.2% family classification accuracy, indicating strong performance

even on obfuscated malware.

 Roy et al. (2022) designed a model using feature aggregation and non-negative

matrix factorization (NMF) with SVM for malware detection. This work extracts the

vulnerable features of the application, then applied the aggregation method to count the

occurrence of the features. After that, to find and reduce the optimal features, a ML-based

techniques called Non-negative Matrix Factorization (NMF) was applied. Their method

achieved 93.35% accuracy without feature reduction, and 88.72% with NMF, highlighting

trade-offs between dimensionality.

 Chimeleze et al. (2022) introduced BFEDroid, which uses back- ward, forward, and

exhaustive subset selection to reduce features, resulting in a 99% detection rate with

minimal memory usage and performance.

 Wu et al. (2022) proposed DroidRL, a reinforcement learning- based feature

selection method (DDQN) that reduced feature dimensions to 24 static features, yielding

95.6% accuracy with RF classifiers.

A Survey of Classical and Hybrid Machine Learning Models for Android Malware

Detection: Techniques, Taxonomies, Challenges, and Future Research Directions

95

 Mahindru & Sangal (2022) presented FSDroid, which com- bines filter and wrapper

techniques to optimize features. Their model demonstrated efficient malware detection

across various feature sets.

 Alazzam et al. (2023) applied a binary Owl optimizer and RF for classification,

achieving 98.84% on the Drebin dataset, though with a notably poor F1-score.

 Hossain et al. (2023) used Particle Swarm Optimization (PSO) and achieved

81.58% accuracy in detecting Android ransomware using RF and SVM.

 Chemmakha et al. (2023) utilized embedded methods (Light- GBM and RF) for

feature selection, reporting over 99% accuracy but lacking in detailed evaluation metrics

such as recall and F1-score.

 Soundrapandian & Subbiah (2022) designed a lightweight ML framework using

evolutionary feature selection and Mahalanobis distance metric. Their model achieved

95.69% ac- curacy but lacked robustness against obfuscated malware.

 Ghazi & Raghava (2023) introduced the Mayfly Algorithm (MA) as a wrapper-

based feature optimizer. Evaluated with RF, SVM, and KNN on CIC-MalMem-2022, the

model achieved 99.99% accuracy.

 Ceschin et al. (2023) examined the impact of concept drift using Adaptive Random

Forest (ARF) and SGD on the Andro- Zoo and Drebin datasets. They demonstrated that

SGD maintained 99% accuracy even under evolving malware behavior. AlOmari et al.

(2023) compared several ML algorithms using dynamic features extracted from

CICMalDroid2020. Light-GBM emerged as the best performer with 92.72% accuracy.

Gracia et al. (2021) used transfer learning alongside traditional ML models like RF, KNN,

and XGB to address concept drift, reaching a Matthews correlation coefficient (MCC) of

97.75%. Surendran et al. (2022) proposed a hybrid detection framework using Tree-

Augmented Naive Bayes (TAN), combining static and dynamic features. Their model

achieved 99% accuracy, effectively capturing cross-feature relationships. However, its

limited comparison with other baseline classifiers and lack of scalability testing restrict

broader applicability.

 Shhadat et al. (2021) Using static features, the authors evaluated Random Forest

and Decision Tree classifiers on both binary and multiclass classification tasks. The model

reached up to 98.2% accuracy, indicating strong baseline performance. Nevertheless, the

framework lacked adversarial testing and was focused on static analysis only.

 Usman et al. (2021) approach leveraged decision trees to analyze network-level

indicators like IP address behavior and log activity for forensic detection. s. The proposed

model follows hybrid approach based on dynamic analysis using cuckoo sandbox. The DT

is used for detection purpose that achieved 93.5 % accuracy.

96 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

 Bhusal & Rastogi (2022) provided meta-analysis highlighted how classical ML

models like SVM and RF can be vulnerable to adversarial feature manipulation. While

offering no detection model, it emphasized the critical need for robust model hardening in

malware detection pipelines.

 Yerima et al. (2016) using Naive Bayes on static permissions and API calls, this

early study demonstrated effective zero- day malware detection. The methodology showed

strong performance against known samples. However, it struggled with highly obfuscated

malware and lacked behavioral insight.

 Rathore et al. (2019) pre-processed Android malware data using clustering before

applying RF, SVM, and DT. This hybrid method improved RF performance to 98.34%.

However, only static features were used, limiting dynamic behavioral coverage.

 Panman de Wit et al. (2021) work used RF, KNN, and AdaBoost on device-level

indicators like CPU, memory, and battery usage for malware detection. Despite achieving

low false positive rates, the F1-score was only 0.73, reflecting moderate detection power in

mobile environments.

 Shakya & Dave (2022) leveraged system-call logs and applied Decision Trees and

KNN for classification. Decision Trees performed best for malware family classification.

The main challenge was adapting the model for real-time or resource-limited devices.

 Liu et al. (2025) conducted a benchmarking study comparing ML and DL models

across multiple Android malware datasets. Their findings revealed that traditional ML

models often match or outperform DL in practical settings. The downside is DL may excel

only in very large-scale cases.

 Ghorab et al. (2024) paper benchmarked several classical ML models and graph

representations on Android malware datasets. The results varied by model and feature type,

affirming ML’s strength under resource constraints. However, temporal behavior modeling

was not deeply explored.

 Wahad et al. (2024) demonstrated that selecting a sub-set of meaningful

permissions using Recursive Feature Elimination (RFE) and SHAP values significantly

improved detection accuracy while reducing feature space, achieving an F1-score above

0.99. Gupta et al. (2023) leveraged rough set theory to eliminate redundant permission

features and prioritize those most indicative of malicious behavior.

 Odat & Yaseen (2023) constructed a co-occurrence matrix of permissions and API

calls and utilized FP-growth algorithms to identify strong feature associations. Their

method achieved a detection rate of 98%, outperforming permission- only models.

 Mehtab et al. (2022) presented AdDroid, a rule-based engine using a handcrafted

feature set and an Adaboost-based ensemble classifier. The system reached 99.11%

accuracy. Almarshad et al. (2024) addressed the data scarcity problem using a Siamese

A Survey of Classical and Hybrid Machine Learning Models for Android Malware

Detection: Techniques, Taxonomies, Challenges, and Future Research Directions

97

network for few-shot learning. By coupling this with conventional classifiers, they achieved

98.9% accuracy on the Drebin dataset, illustrating its applicability in low- data scenarios.

 Alani & Awad (2024) introduced PAIRED, a framework that combined SHAP

values and recursive elimination to identify the most impactful permission features. The

model achieved accuracy above 98% using tree- based ensemble classifiers.

 Alkahtani & Aldhyani (2024) employed correlation- based feature filtering

followed by classification using SVM, LSTM, and CNN-LSTM models.

 Xiaofeng et al. (2019) proposed MDS that combines the API sequences and

statistics features. In this study, ArguMent-Hashing-based API correlation fast Analysis

algorithm was used. This study has used hybrid of RF and BiLSTM models for

classification that achieved 96.7 % accuracy. This work did not performed multiclass

classification and evaluated with small amount of dataset.

 Seraj et al. (2023) designed a MVDroid framework to identify the malware based

virtual private networks (VPN) using the optimized deep learning. This works the used

permission based malicious android VPN dataset for performance testing of the proposed

framework. The average accuracy of proposed model is 92.81 %. However, the

performance of the proposed MV- Droid can be improved by using feature selection

techniques and other advanced DL models.

 Sahin et al. (2022) proposed multiple linear regression-based AMD model on

permission features. To boost the performance of the proposed model, begging (majority

voting) ensembles learning techniques employed. The presented work used the four

different android malware dataset samples. However, very limited samples of malware and

benign files have been included in this dataset that may reduce the robustness and

scalability of new malware detection.

 Dabas et al. (2023) designed the ML based windows malware detection using

hybrid feature selection techniques. The presented model considered only three types of

API calls (usage, frequency and sequence) features. This model is evaluated on individual

API call set and integrated API calls feature set. The obtained results by integrated feature

set achieved around 99 % accuracy which is better than individual feature set. However, the

proposed model employed the traditional feature reduction techniques on limited API calls

features that reduces generalization capability and scalability of the model.

 Mat et al. (2022) introduced an AMD system using Bayesian probability method.

The proposed system was tested using Androzoo and Drebin datasets. To select optimal

feature subset, IG and chi-square were applied. The obtained accuracy on reduces features

is 91.1 overall accuracy of the proposed model is lower than can be improved using latest

metaheuristic optimization techniques

98 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

4.1 Benchmark datasets overview

 The effectiveness of machine learning models for Android malware detection is

heavily influenced by the dataset used for training and evaluation. A robust dataset should

include a diverse set of malware samples, represent real-world scenarios, and provide

reliable labels and features. Several benchmark and custom datasets have been widely

utilized in the literature, each offering unique properties and challenges.

 One of the most widely cited datasets is Drebin, which contains over 5,500 malware

samples and around 123,000 benign applications. It provides static features extracted from

Android application packages (APKs), including permissions, API calls, and manifest

entries. Drebin has become a standard benchmark in many studies due to its size, structure,

and accessibility (Ghazi & Raghava, 2023; Liu et al., 2025; Almarshad et al., 2024).

Table 1: Summary of Android Malware Detection Studies using ML Techniques

Author(s) Dataset Used ML Model Used Accuracy

Garg & Baliyan (2024) Unknown
PART, RIDOR, SVM,

MLP (Ensemble)
98.27%

Wang et al. (2023) Network Traffic C4.5 97.89%

Bahtiyar et al. (2023) Windows API features Regression N/A

Karbab & Debbabi (2021) Behavioral logs RF + BiLSTM 96.7%

Han et al. (2020) Custom (Behavioral traits) Random Forest 99.7%

Roy et al. (2022) Unknown SVM + NMF
93.35% /

88.72%

Chimeleze et al. (2022) Unknown Subset Selection 99%

Wu et al. (2022) Static Features DDQN + RF 95.6%

Alazzam et al. (2023) Drebin Owl Optimizer + RF 98.84%

Hossain et al. (2023) Android Ransomware PSO + RF, SVM 81.58%

Chemmakha et al. (2023) Unknown LightGBM, RF 99%

Soundrapandian & Subbiah

(2022)
Unknown Evo FS + Mahalanobis 95.69%

Ghazi & Raghava (2023)
CIC-MalMem-202 &

drebin
Mayfly + RF, SVM, KNN 99.99%

Ceschin et al. (2023) AndroZoo, Drebin ARF, SGD 99%

AlOmari et al. (2023) CICMalDroid2020 LightGBM 92.72%

Gracia et al. (2021) Unknown
Transfer Learning + RF,

KNN, XGB
MCC: 97.75%

Surendran et al. (2022) Hybrid (Static + Dynamic) TAN 99%

Shhadat et al. (2021) Static Features RF, DT 98.2%

Usman et al. (2021) Cuckoo Sandbox DT 93.5%

A Survey of Classical and Hybrid Machine Learning Models for Android Malware

Detection: Techniques, Taxonomies, Challenges, and Future Research Directions

99

Bhusal & Rastogi (2022) N/A
SVM, RF (robustness

analysis)
N/A

Rathore et al. (2019) Unknown Clustering + RF, SVM, DT 98.34%

Panman de Wit et al. (2021) Device-level stats RF, KNN, AdaBoost F1: 0.73

Shakya & Dave (2022) System Call Traces DT, KNN
Family-level

detection

Liu et al. (2025) Multiple Malware Datasets ML vs DL Benchmarking N/A

Ghorab et al. (2024) Android Malware Sets Various ML models Varies

Wahad et al. (2024) Permissions RFE + SHAP + Classifier 0.99

Gupta et al. (2023) Permissions Rough Set Theory N/A

Odat & Yaseen (2023) Permissions + API Calls FP-Growth 98%

Mehtab et al. (2022) Unknown Adaboost (Rule-Based) 99.11%

Almarshad et al. (2024) Drebin Siamese + Traditional ML 98.9%

Alani & Awad (2024) Permissions
SHAP + RFE + Ensemble

Trees
98%

Xiaofeng et al. (2019) Unknown RF + BiLSTM 96.7%

Seraj et al. (2023) VPN Malware Dataset Optimized DL 92.81%

Dabas et al. (2023) Windows API Calls Hybrid FS + ML 99%

Mat et al. (2022) Androzoo, Drebin Bayesian + IG, Chi-square 91.1%

 Another important resource is AndroZoo, a large-scale and continuously updated

dataset of millions of Android apps collected from various sources, including Google Play

and third-party markets. It offers raw APK files, metadata, and behavioral information,

which can be used for both static and dynamic analysis. AndroZoo enables studies on

malware evolution and concept drift, as demonstrated in works by Ceschin et al. (2023) and

Ghorab et al. (2024).

 The CICMalDroid2020 dataset provides hybrid features derived from both static

and dynamic analysis of Android apps. It includes behavioral logs such as API calls, system

calls, and network activity, making it suitable for evaluating detection frameworks that

combine multiple types of analysis. This dataset was employed in studies like AlOmari et

al. (2023) and Surendran et al. (2022) to test hybrid detection models.

 Additionally, the CIC-MalMem-2022 dataset—though originally designed for

Windows malware—has been adapted in some Android malware studies, particularly for

evaluating transfer learning or behavior-based classifiers. It includes rich dynamic features

such as system behavior logs and memory consumption data (Ghazi & Raghava, 2023).

 Researchers also use custom-built datasets, often generated using tools like

DroidBox, Cuckoo Sandbox, MobSF, or other dynamic analysis frameworks. These

datasets are typically tailored for specific objectives such as ransomware detection (Hossain

et al., 2023), VPN abuse (Seraj et al., 2023), or permission misuse (Wahad et al., 2024).

100 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

While they offer the advantage of capturing up-to-date malware patterns, custom datasets

often lack standardization and reproducibility across studies. Despite their usefulness,

current datasets still present several limitations. There is a lack of unified labeling

standards, diverse malware family representation, and balanced class distributions.

Additionally, many datasets emphasize static features while neglecting real-time behavioral

attributes. These limitations underscore the need for well-maintained benchmark datasets

that support hybrid analysis, adversarial testing, and longitudinal studies.

4.2 Discussion and key finding

 Among the classical machine learning algorithms studied for Android malware

detection, Random Forest (RF) consistently emerged as a top performer across multiple

datasets and feature combinations. Its ensemble nature and ability to handle high-

dimensional feature spaces make it suitable for complex and imbalanced malware datasets.

Studies like those by Ghazi & Raghava (2023), Chimeleze et al. (2022), and Han et al.

(2020) reported detection accuracies of over 99% using RF in combination with optimized

features. Support Vector Machines (SVM) also demonstrated strong performance,

particularly in binar classification tasks, due to their robustness against over-fitting and

ability to handle non-linear decision boundaries. Additionally, hybrid approaches that use

ensemble models (e.g., combining PART, RIDOR, and MLP (Garg & Baliyan, 2024)) and

optimization-driven feature selection (e.g., Mayfly, Particle Swarm Optimization, and Owl

optimizer) tend to outperform standalone classifiers. These combinations of- ten balance

accuracy, interpretability, and computational efficiency, which is especially critical for

deployment on mobile or embedded systems.

 Common Feature Types Used: The most widely used features in the literature can

be broadly categorized into static, dynamic, and hybrid types. Static features—such as

requested permissions, API calls, manifest entries, op- code sequences, and control-flow

graphs—are extracted without executing the application and are prevalent due to their low

computational cost. For example, permission-based detection remains popular, as shown in

studies by Yerima et al. (2016) and Wahad et al. (2024). Dynamic features, including

system calls, network traffic patterns, battery consumption, and runtime behaviors, provide

deeper insights into application behavior, especially for detecting obfuscated or fileless

malware. These are used in models like MalInsight (Han et al., 2020) and BFEDroid

(Chimeleze et al.,). Recently, hybrid feature sets, which combine static and dynamic

attributes, have gained traction for their robustness and broader coverage, as demonstrated

in the work by Surendran et al. (2022). Feature selection techniques—such as Information

Gain, Chi-square, Recursive Feature Elimination (RFE), SHAP values, and metaheuristic

A Survey of Classical and Hybrid Machine Learning Models for Android Malware

Detection: Techniques, Taxonomies, Challenges, and Future Research Directions

101

algorithms—play a critical role in eliminating redundant information and enhancing model

accuracy and speed.

 Trends Observed Across Years: Over the years, there has been a notable evolution

in the direction and sophistication of Android malware detection research. Early studies

(pre-2018) focused primarily on static analysis using basic classifiers like Decision Trees

and Naive Bayes. With the introduction of datasets like Drebin and AndroZoo, more

complex models and larger-scale experiments became feasible. Between 2019 and 2021,

ensemble methods and optimization-driven feature se- lection began gaining prominence,

reflecting a shift toward improving robustness and scalability. More recent studies from

2022 to 2024 highlight an increasing focus on hybrid analysis, adversarial robustness, and

concept drift adaptation. For example, adaptive models like ARF (Adaptive Random Forest)

(Ceschin et al., 2023) and transfer learning approaches (Gracia et al., 2021) address the

evolving nature of malware. Additionally, researchers have started exploring real-time and

lightweight deployment models suitable for mobile environments, as seen in

Soundrapandian & Subbiah’s work (2022). However, despite high reported accuracies, the

lack of standardized benchmarks and consistent evaluation metrics still hampers a fair

comparison across studies.

4.3 Gaps in literature

 While the literature presents strong evidence for ML-based Android malware

detection, several gaps remain:

• Most models focus on binary classification (malicious vs. benign), neglecting multi-

class classification needed for malware family detection.

• Several studies overlook real-time detection capabilities and scalability, which are

essential for deployment in live Android environments

• Evaluation metrics like F1-score and recall are inconsistently reported, limiting

comparative analysis.

• Few studies assess models under adversarial conditions, such as obfuscation or concept

drift.

 These gaps highlight the need for further research into interpretable, lightweight,

and resilient ML models that can generalize well across diverse datasets and malware types.

5.0 Conclusion

 The increasing complexity and volume of Android malware have outpaced the

capabilities of traditional detection systems, necessitating the adoption of intelligent,

adaptive methods. This review systematically examined a wide spectrum of machine

learning (ML) techniques applied to Android malware detection. By excluding deep

102 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

learning models, the focus remained on lightweight, interpretable, and computationally

efficient ML approaches such as Random Forest, Support Vector Machines, Naive Bayes,

k-Nearest Neighbors, and Decision Trees.

 The survey covered core components of ML-based detection pipelines, including

static and dynamic malware analysis techniques, feature extraction and selection strategies,

commonly used datasets, and evaluation metrics. Numerous studies demonstrated high

accuracy and robustness using classical ML models, especially when combined with

optimized features and ensemble learning. However, it was also observed that many of

these approaches were developed and tested under controlled conditions and did not always

generalize well to real-world, evolving malware threats. The growing complexity and

volume of Android malware have surpassed the capabilities of conventional detection

systems, making it essential to implement intelligent, adaptive strategies. This review

thoroughly analyzed a broad range of machine learning (ML) techniques utilized for

Android malware detection. By omitting deep learning models, the emphasis was placed on

lightweight, interpretable, and computationally efficient ML methods such as Random

Forest, Support Vector Machines, Naive Bayes, k-Nearest Neighbors, and Decision Trees.

6.0 Future Recommendations

 To enhance the effectiveness and applicability of ML-based Android malware

detection, the following directions are recommended for future research:

• Focus on multiclass and hierarchical classification: Most current approaches focus on

simple malicious-vs-benign classification. Future work should address malware family

classification, as well as hierarchical behavioral categorization, which provides deeper

insights into malware capabilities.

• Integrate hybrid analysis for enhanced feature coverage: Combining static and

dynamic features provides a more comprehensive view of application behavior. Hybrid

models leveraging both analysis types can significantly reduce false positives and

improve resilience to evasion.

• Promote real-time and on-device ML solutions: Future research should prioritize the

development of resource-efficient ML models capable of running in real time on mobile

devices. Lightweight classifiers like Decision Trees and optimized versions of SVM or

RF may be more suitable than complex models.

• Use semi-supervised or active learning: Given the challenges of obtaining labeled

malware data, semi-supervised, active, or federated learning approaches could help

train models with fewer labeled samples while maintaining high accuracy.

A Survey of Classical and Hybrid Machine Learning Models for Android Malware

Detection: Techniques, Taxonomies, Challenges, and Future Research Directions

103

References

Alani, M., & Awad, A. (2024). PAIRED: Permission analysis using SHAP and RFE. IEEE

Transactions on Information Forensics and Security, 19, 2231–2243.

Alazzam, M., Heidari, A. A., Mafarja, M., Dhiman, G., & Abualigah, L. (2023). Binary owl

optimization for Android malware detection. Mathematics, 11(1), 1–15.

Alkahtani, A., & Aldhyani, T. (2024). Hybrid correlation-filtered malware detection using

ML and DL. Future Generation Computer Systems, 144, 210–222.

Almarshad, F., Alshammari, R., & Alanazi, H. (2024). Few-shot learning for Android

malware detection with Siamese networks. Sensors, 24(1), 89.

AlOmari, S., Alshamrani, A., & Alrassan, I. (2023). Evaluation of ML classifiers for

dynamic Android malware detection. Electronics, 12(3), 749.

Bahtiyar, M., & Ertugrul, E. (2023). A regression-based prediction model for advanced

malware detection. Journal of Cybersecurity and Information Management, 7(2), 55–62.

Bhusal, A., & Rastogi, R. (2022). Adversarial robustness in Android malware: A survey.

Electronics, 11(8), 1215.

Ceschin, J., Moreira, G., Albuquerque, R. D., Junior, O. A., & Guidoni, D. L. (2023).

Concept drift resilience in Android malware detection using adaptive learning. IEEE

Access, 11, 1002–1013.

Chemmakha, M., Gharsellaoui, H., & Alimi, A. M. (2023). Embedded feature selection

with LightGBM and RF for Android malware. Journal of Information Security and

Applications, 65, 103107.

Chimeleze, K., Ezugwu, A. E., Aboudaif, M. K., & Almutairi, A. (2022). BFEDroid:

Backward and forward exhaustive feature reduction for Android malware. Procedia

Computer Science, 184, 93–102.

Dabas, N., Ahlawat, P., & Sharma, P. (2023). An effective malware detection method using

hybrid feature selection and machine learning algorithms. Arabian Journal for Science and

Engineering, 48(8), 9749–9767.

104 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

Garg, G., & Baliyan, N. (2024). Android malware detection using parallel ensemble

machine learning. Telematics and Informatics, 84, 102006.

Ghazi, N., & Raghava, V. (2023). Android malware detection using the Mayfly algorithm

and ensemble classifiers. Computers & Security, 123, 103042.

Ghorab, M., Ibrahim, M., & Soliman, H. (2024). Comprehensive benchmarking of ML

classifiers for Android malware. arXiv Preprint, arXiv:2402.02953.

Gracia, M., García, S., & Devesa, J. (2021). Addressing malware drift using transfer

learning and traditional ML. Applied Sciences, 11(9), 4004.

Gupta, R., Kumar, V., & Sharma, A. (2023). Rough set-based feature prioritization for

permission-based malware detection. Applied Soft Computing, 125, 109151.

Han, Y., Xia, Y., Gong, L., He, J., & Yang, J. (2020). MalInsight: Profiling-based Android

malware detection using behavioral traits. Future Generation Computer Systems, 108,

1302–1316.

Hossain, M., Rahman, M. A., & Islam, S. R. (2023). Particle swarm optimization with ML

classifiers for Android ransomware. Expert Systems with Applications, 203, 117522.

Karbab, A., & Debbabi, M. (2021). MalDy: Portable, data-driven malware detection using

NLP and machine learning. IEEE Transactions on Dependable and Secure Computing,

18(2), 390–404.

Liu, G., Zhang, H., Chen, Y., & Wu, J. (2025). Benchmarking traditional ML vs DL for

Android malware detection. arXiv Preprint, arXiv:2502.15041.

Mahindru, N., & Sangal, R. (2022). FSDroid: Feature selection framework for malware

classification. Security and Privacy, 5(3), e163.

Mat, S. R. T., Razak, M. F. A., Kahar, M. N. M., Arif, J. M., & Firdaus, A. (2022). A

Bayesian probability model for Android malware detection. ICT Express, 8(3), 424–431.

Mehtab, S., Gupta, R., & Rani, S. (2022). AdDroid: Rule-based malware detection using

Adaboost. Expert Systems with Applications, 199, 116830.

A Survey of Classical and Hybrid Machine Learning Models for Android Malware

Detection: Techniques, Taxonomies, Challenges, and Future Research Directions

105

Odat, R., & Yaseen, M. (2023). Permission–API co-occurrence mining for malware

classification. Computers & Electrical Engineering, 104, 108498.

Panman de Wit, N. P., Koot, M., Veldhuis, R., & Rutten, R. (2021). Detecting mobile

malware through device-level indicators. IEEE Access, 9, 15513–15529.

Rathore, M. M., Ahmad, A., Paul, A., & Rho, S. (2019). Clustering-enhanced malware

detection using machine learning. IEEE Systems Journal, 13(1), 532–539.

Roy, A., Khan, S., & Singh, A. (2022). SVM with non-negative matrix factorization for

Android malware detection. Computer Networks, 208, 108940.

Sahin, N., Akleylek, S., & Kilic, E. (2022). LinRegDroid: Detection of Android malware

using multiple linear regression models-based classifiers. IEEE Access, 10, 14246–14259.

Santosh, K. S., Smmarwar, G. P., Gupta, G. P., & Kumar, S. (2024). Android malware

detection and identification frameworks by leveraging the machine and deep learning

techniques: A comprehensive review. Telematics and Informatics Reports, 14, 100130.

https://doi.org/10.1016/j.teler.2024.100130

Seraj, S., Khodambashi, S., Pavlidis, M., & Polatidis, N. (2023). MVDroid: An Android

malicious VPN detector using neural networks. Neural Computing and Applications,

35(29), 21555–21565.

Shakya, P., & Dave, M. (2022). System-call-based Android malware detection using

classical ML. Procedia Computer Science, 193, 15–24.

Shhadat, T., Al-Saleh, M., & Rawashdeh, M. (2021). Static feature-based classification of

Android malware. International Journal of Computer Applications, 182(42), 28–33.

Soundrapandian, M., & Subbiah, S. (2022). Lightweight malware detection using

Mahalanobis distance and evolutionary FS. Wireless Personal Communications, 125,

137–152.

Surendran, D., & Krishna, D. (2022). Hybrid malware detection with Tree-Augmented

Naive Bayes. Wireless Networks, 28, 545–558.

https://doi.org/10.1016/j.teler.2024.100130

106 COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies,

Volume 5, Issue 1, Jan-Jun 2025

Usman, M., Jan, M. A., Alam, M., & Khan, F. (2021). Malware forensics using IP-based

decision tree analysis. Digital Investigation, 36, 301068.

Wahad, N., Singh, P., & Kaur, R. (2024). Improving Android malware detection via RFE

and SHAP-based feature reduction. Journal of Computer Security, 32(1), 25–38.

Wang, L., Zhang, Y., Li, H., Chen, X., & Zhao, J. (2023). A network traffic analysis

framework for Android malware detection. Computer Communications, 212, 85–92.

Wu, J., Chen, Y., Zhang, X., Yang, C., & Zhou, M. (2022). DroidRL: Deep Q-learning for

malware feature selection. IEEE Access, 10, 12746–12757.

Xiaofeng, L., Fangshuo, J., Xiao, Z., Shengwei, Y., Jing, S., & Lio, P. (2019). ASSCA: API

sequence and statistics features combined architecture for malware detection. Computer

Networks, 157, 99–111.

Yerima, S. Y., Sezer, S., & McWilliams, G. (2016). Zero-day detection using Bayesian

classification on Android apps. Information Security Journal: A Global Perspective, 25

(4-6), 213–225.

