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ABSTRACT 

 

The effectiveness and storage capacity of single-bit cache memory have been investigated. Write 

driver circuit, random access memory cell, and current mode detector make up the single-bit 

cache. Using various strategies, such as power-saving components like current mode sensing 

amplifiers and static random access memory cells, memory systems with just one bit of cache can 

use less power. To save power, substitute a forced stack and a current mode detecting amplifier 

for a single-bit cache. 
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1.0 Introduction 

 

As transistors get smaller, large integrated circuits can have more circuits and function 

better. Transistors in most integrated circuits are connected by wiring [1-4]. The wiring within a 

semiconductor is referred to as the "global interconnect on-chip." Other global linkages, including 

those connecting cache memory to CPUs, are emerging alongside breakthroughs in submicron 

VLSI technology. How long it takes to make depends on how many connections a chip has 

globally [5-7]. Transceivers and signalling protocols enable faster message transmission. The 

recordings of sense amplifiers used as connection receivers allowed for this discovery. A 

combination of the SRAMC and sense amplifier has also been suggested [8–10]. 

 

1.1 Power reduction techniques 

The requirements of a circuit are met while using less electricity [11]. 

 

1.1.1 Sleep transistor technique 

State-destructive operations can harm PMOS and NMOS sleep transistors connected to the 

supply voltage or ground. The same technology is known by the names VDD and gated-ground [12]. 

Sleep semiconductor technology lowers the power used during sleep by separating logical networks 

from sleep transistors (see Figure 1). 

 

1.1.2 Forced stack technique 

Figure 2 illustrates the forced stack. Costs can be further decreased by stacking transistors. By 

turning off lots of transistors at once, stacking the semiconductor device lowers the subthreshold 

leakage current [13]. 
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Figure 1: Sleep Transistor Technique        Figure 2: Forced Stack Technique 

 

 

1.1.3 Dual sleep technique 

Every component in the circuit is either NMOS or NMOS-like (NM0 and NM1). On the other 

hand, the header and footer employ NMOS and PMOS transistors, respectively. The two options are 

"on" and "off" [14]. These two devices operate normally when not used, as seen in Figure 3. 

 

Figure 3: Dual Sleep Technique 

 

 

2.0 Single-Bit Memory Architecture  

 

Figure 4 depicts an example of single-bit cache memory. This machine's most critical 

components include SRAMC/WDC/CMSA. The description has three sections: Bit, WE, and BL 

escape BLBAR as BLBAR moves into WDC [15,16]. The SRAMC's two output pins are designated 

by the letters WL and V1. Ysel/BL/BLBAR/PCH/SAEN inputs are available when the CMSA is 

connected to the WDC. 
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Figure 4: Single Bit Architecture 

 

 
 

2.1 WDC 

Figure 5 shows the write driver for this application. The bit line's high pre-load level is below 

the writing margin of the SRAMC when the WDC is turned on. With the aid of a WDC, the necessary 

voltage may be calculated. When WE are set to 1, all data received from an input line is sent to that 

line's bit lines. The word "Write Enable" is highlighted at the very top of the code. Finally, access 

transistors provide the data to the proper memory cell. Before the WDC, each computer bit cell was 

required to have a particular value [17,18]. 

 

Figure 5: WDC 

 

 



34 Journal of Futuristic Sciences and Applications, Volume 4, Issue 2, Jul-Dec 2021 

Doi: 10.51976/jfsa.422105 

 
2.2 Conventional SRAM 

The shifting of the 6T SRAMC is shown in Figure 6. Due to how much data they can store, 

"static RAM cells" are also known as SRAMCs. Six NM8/NM9 NMOS transistors and six CMOS 

inverters serve as access transistors for the SRAMC (PM6, PM7, NM6, and NM7). The cross-coupled 

inverters for each bit are constructed using transistors and SRAMC. The only possible values in the 

cell [19,20] are 0 or 1. In a bi-stable latching circuit, two inverters control six SRAMC transistors. 

 

Figure 6: Conventional SRAM 

 

 
 

2.3 CTDSA 

The sensing amplifier plays a key role in the cache memory's construction. Only one of the 

two-bit lines is wired to the power source during reading. A current sense amplifier comprises various 

parts that talk to one another [21-23]. 

 

Figure 7: CTDSA 
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3.0 Analysis of Result 
 

In this section, the output of each circuit is described and rated. Figure 8 displays the SAEN, 

WL, and CMSA open and reading data. This sensing amplifier can read only the bit lines of SRAM 

cells. The bit lines provide data to V3 and V4. 

 

Figure 10: CTDSA Output Waveform 

 
 

Table 1: SBSCMSA Different Parameter 

 

S.No. Parameters Power Consumption Sensing Delay 

1. R=42.3Ω 25.78µW 20.41ηs 

2. R=42.3KΩ 30.87µW 20.41ηs 

 

Less power is needed as the resistance rises. A circuit's resistance impacts its size, 

functionality, and speed. In essence, it makes the spread of authority more challenging. 

 

Table: 2 Different Parameters While Utilizing Different Power-Reduction  

Methods Over SA 
 

 SBSCMSA 

Power Consumption Sensing Delay No. of Transistors 

Dual Sleep 26.68 µW 20.11 ηs 40 

Sleep Transistor 26.78 µW 20.51 ηs 38 

Forced Stack 26.88 µW 20.81 ηs 38 

 

To cut down on power usage when using a forced stack technique, CMSA uses the SRAM 

strategy shown in Table 3. 

 

Table 3: Utilizing Various Power Reduction Techniques, SRAM with  

CMSA Power Consumption 

 

Technqiues 
SBSCMSA 

Power Consumption Sensing Delay 

Dual Sleep 24.32 µW 20.11 ηs 

Sleep Transistor 26.55 µW 20.51 ηs 

Forced Stack 25.55 µW 20.81 ηs 

Architecture 
Techniques 
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4.0 Conclusion 

 

Researchers examined single-bit cache memory to determine its effectiveness. Single-bit 

cache memory comprises a write driver circuit, a static random access memory cell, and a current 

mode detection amplifier. Single-bit cache memories can consume less power using sleep transistors, 

forced stacks, and dual sleep on components like current-mode sensors and static random-access 

memories. In this study, it was discovered that SRAM cells consumed less power than single-bit 

caches. 
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