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ABSTRACT 

 

Cascade multilevel inverters (CMI) are superior to other multilevel inverter configurations in 

STATCOM applications owing to their distinguishing features, such as structural flexibility and 

control design feasibility in the service of lower device losses and high value of AC output voltage 

waveform quality. Voltage output stabilization and power factor correction at the point of common 

connection are two challenging difficulties that might lead to the system’s dominance. In this 

work, the overall control architecture for the system is presented, provides information on how the 

9-level CMI may be utilised as STATCOM to carry out dc link voltage balancing and reactive 

power compensation. The superiority of the system under varying loads and fault circumstances 

has been confirmed by computer modelling. 

 

Keywords: Point of Common Coupling (PCC); Cascade Multilevel Inverter (CMI); Line Ground (LG) 

Fault. 

 

1.0 Introduction 

 

Continuous and accurate power management, such as voltage level regulation, power flow in 

overhead transmission management, and system stability improvement [1] are all made possible by 

converter-based FACTS controllers. By transferring power exchanged in a reactive manner between 

STATCOM and the grid, this FACTS device greatly improves voltage control and transient stability 

[2]. Since it requires fewer parts and is more efficient overall, the CMI converter is often used as a 

STATCOM [3, 4]. Other multilevel topologies, such as the diode clamped and flying capacitor, are 

also in use. Maximizing the figure of levels in the output voltage waveform is made feasible by the 

increased switching repetition with trade off flexibility between voltage regulation, switching losses, 

and harmonic performance. In comparison to other multilevel inverter topologies, reduced switching 

device losses, reduced component requirements, and simplified control are all advantages of cascade 

multilevel inverters. To prevent potential imbalance on the DC side of a number of H bridges, active 

power balancing is used to compensate for the power losses of each H bridge individually [5]. The 

grid voltage is used as a standard against which the reactive power is measured in order to 

compensate for it. Differences between dc-link voltages and the reference voltage are used to 

determine the amount of active power that must be supplied to the STATCOM. 
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By balancing measurements of dc link voltage and monitoring reactive power as needed, a 

well-designed controller and a carefully chosen modulation method may significantly boost a 

system’s dynamic performance. STATCOM system setup based on three-phase cascade multi-level 

inverters is shown in Figure 1. 
 

Figure 1: CMI based STATCOM Layout 
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2.0 DC Voltage Balancing 

 

When a cascade multilevel inverter (CMI) is used in a STATCOM application, the system’s 

practicality and modularity are both improved by the use of a separate dc capacitor; nevertheless, the 

dc voltage often becomes unbalanced as a result of the CMI’s internal losses. Poor waveform quality, 

unequal voltage pressure throughout switching devices, and overvoltage at any one connection are all 

conditions that may be avoided with proper dc voltage balancing. To offset the power losses caused 

by CMI’s internal components, a phase shift between the converter’s output voltage and the network 

voltage may be used to accomplish dc voltage balancing. In order to accomplish dc voltage balancing, 

it is necessary to STATCOM’s active power input to each H bridge may be changed. [6]. As 

illustrated in Figure 2, a DC voltage phenomenon in a system is created by measuring and calculating 

DC voltage of each individual H bridge with a reference dc potential and then sending the resulting 

error signal via a PI controller. As illustrated in Figure 2, the average of each cluster’s DC voltage 

(i.e. V (dca), V (dcb), and V dcc) is made to track the average of all clusters’ voltages ( Vdc). 

 

3.0 CMI based Statcom Mathematical Modelling and Control  

 

3.1 Mathematical modelling 

In this model, a CMI-based STATCOM is represented by a voltage source converter that is 

reactively connected to the transmission or distribution network. In Figure 3, Vs represents the 
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voltage of the power system, Vc represents the voltage of the STATCOM, represents the current 

drawn by the STATCOM, and R and L represent the total resistance and inductance between the 

source and the STATCOM, respectively. As a result of the disparity between the network voltage and 

the STATCOM voltage, the STATCOM is able to generate its own current by adjusting the coupling 

parameters in the following ways: 
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ccsc  
Where Vsa, Vsb and Vsc represents the three phase source voltages and denotes the three phase 

STATCOM voltages. 

Type of ahead-or-behind current transmitting from STATCOM to the network or network to 

STATCOM is determined by the voltage magnitudes between STATCOM and network, which are as 

follows: 

 

Figure 2: A Technique for Balancing DC Voltage 
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Figure 3: Linear Representation of a CMI-based STATCOM System 
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If Vc > Vs, then the STATCOM will be the source of the leading reactive current in the 

power grid. When Vc < Vs, a lagged reactive current flow from the power grid to the STATCOM. 
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Reactive power and active power exchange between STATCOM and network may be 

controlled and understood in terms of a mathematical model using equations (2-8) where the three-

phase quantity is transformed into a synchronous dq reference frame using a matrix called [T]. 
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3.2 STATCOM controller using CMI 

Figure 4 shows a block schematic of the internal controls for a CMI-based STATCOM. For 

vector transformation like abc to dq, it is necessary to measure voltage and current at the point of 

common coupling, and the phase angle and reference frequency are calculated using phase locked 

loop synchronisation circuitry. Each phase of the dc link voltage may be balanced independently 

using the individual dc voltage controllers and the cluster voltage controllers that make up a DC 

voltage regulator [7]. The CMI STATCOM is to receive a programmable switching instruction from 

the dc voltage regulator, ac voltage regulator, and PWM modulator, as seen in Figure 4. As the 

number of cascade bridge cells per cluster rises, a modulation approach like Phase shifted PWM 

should be considered because of the simplicity with which the control system may be implemented. 

 

Figure 4: Controller for CMI based STATCOM 
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4.0 Simulation Result 

 

The simulation results demonstrate the system’s superiority by revealing its clearly defined 

dynamic performance, such as meeting Demand for reactive power from the load side, while 

maintaining a constant dc link voltage throughout the inductive/capacitive operation. The 

mathematical description of STATCOM is used to compile Table I, which lists the simulation 

parameters. The waveforms of the three-phase STATCOM output voltage are shown in Figure 5 (A) 

in standby mode, (B) in inductive mode (0.02 to 0.15 sec), and (C) in capacitive mode (0.15 to 0.3 

sec). Four capacitors are employed in a single phase CMI – STATCOM, and their dc voltage balance 

is shown in Figure 6. 

There is a 0.15-second transition time between the inductive mode (a) and the capacitive 

mode (b), as shown in Figure 7. 

During the switch from inductive to capacitive mode, Figure 8 demonstrates the dynamic 

performance of CMI-based STATCOM by displaying the tracking between the reactive current 

reference (Iq*) and the reactive current (Iq) given by STATCOM. 

 

Table 1: Simulation Parameters 

 

Rated Power 130 Kvar 

Rated Voltage 11 kv 

Number of Cells/Phase 4 

DC Capacitor 5.66 mF 

DC Voltage 1995 Vdc 

Output waveform Frequency 50 Hz 

Reactive Current (Iq
*
)

 
9 Amp 

 

Figure 5 STATCOM output waveform of the voltage in (A) the standby mode and (B) the 

inductive mode (a)/capacitive mode (b) 
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(B) 

 
Figure 6: DC Voltage Balancing 

 
Figure 7: PCC Voltage and Current Waveform 
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Figure 8: Reactive Current Component Tracking 
 

 
5.0 Conclusion 

 

In this particular research, a nine-level cascade multilevel inverter is used as a STATCOM in 

order to enhance the overall performance and efficiency of the system. The results of the simulation 

have shown that the system is preferable due to the fact that it lowers the reactive power consumption 

at the point of common connection and maintains the dc link voltage at a reference value even when 

subjected to changing loads and unbalanced fault circumstances. The results of the simulation have 

shown that this system is preferable. The efficacy of the control structure that was put into place for 

the cascade multilevel inverter that was used in the STATCOM application was validated by the 

results of the simulation. 
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