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ABSTRACT 

 

This work includes the design of voltage and current difference latches and low-power cache 

memory for a single-bit processor core architecture. To save power, the single-bit cache memory 

uses voltage differential sensing amplifiers. 
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1.0 Introduction 

 

Many mobile gadgets and systems that work together demand batteries [1]. The single-bit 

cache memory on the chip, which takes up 60 to 70 per cent of its surface area, is where the data is 

kept. As chip utilization rises, CPU speed declines. As demand for VLSI systems increases quickly, 

low-speed, low-power memory circuits are designed to keep up. The number of transistors added or 

subtracted impacts how quickly a chip fails for each. The fundamental premise of the paper is that 

sensory stimulation improves cognition. According to predictions, memory cache will eventually 

occupy more than half of high-performance microprocessor transistors [2]. SRAMC 

semiconductors are renowned for functioning effectively in noisy situations. Due to this, high-

performance computers with lower electrical requirements have become more popular. With 

SRAMC, smaller memory cells are not a concern. This means the user can utilize the entire amount 

of RAM on the gadget. A city grows and evolves more quickly and drastically than other areas. There 

is a SA, which is sensitive to high frequencies, inside each SRAMC memory block. SA typically 

takes into account things like memory access times and power consumption. In memory systems, side 

circuits [3,4] play a key role. By digitizing the analogue levels in peripheral Boolean networks, the 

SA can hasten data transmission from one memory cell to the next in the logic circuit [5]. 

 

1.1 Single bit architecture cache memory design  

This section covered the operation of single-bit cache memory. The concept is only partially 

illustrated in Figures. 1 and 2. The Cache Memory Design for Single-Bit Architecture includes WDC, 

STSRAM, and other sense amplifiers, including voltage differential and current latch sense amplifiers 

[11,12]. 
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Figure 1: Single Bit STSRAM VDSA Architecture 

 

 
 

Figure 2: Single Bit STSRAM CLSA Architecture 

 

 
 

1.2 WDC 

The WDC is seen in action in Figure 3. The STSRAM write driver quickly drains each bit 

line from the pre-charge stages once the write margin has been achieved. 
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Figure 3: WDC 

 

 
 

The write enables (WE) signal, which activates the write data converter, is typically sent over 

the bit line. A pre-charge takes place before the full-swing charge to the ground (WDC). Every PMOS 

and NMOS in the WDC’s stock are now in use. Every PMOS has a PMOS for PM1, PM2, PM3, 

PM4, and PM5 (NM1, NM2, NM3, NM4, and NM5). Depending on the data, one of the transistors 

may be PM1 or NM1. 

 

1.3 SRAMC  

It works well for tasks that don’t require much power or voltage. A latching circuit tracks 

each bit. Driving (M1 and M2) and drawing up transistors are shown in Figure 4. (PMOS). There is 

more noise margin with these bit lines. It is unnecessary to reload DRAM cells [15, 16] while the 

power is still on. The performance of an SRAM is influenced by transistor size. 

 

Figure 4: SRAMC 

 

 
 

1.4 DSA and LSA 

The sensing amplifier causes the voltage differential between the read-access bit lines to 

increase. The overall quality of the digital output depends on the amplification. More transistors are 

necessary to break up lengthy data lines. The metal is stronger as a result. 
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1.5 VMSA 

The amplifier receives power from the voltage difference between the two-bit lines. A cross-

connected inverter converts the initial voltage difference between the bit lines into full swing output. 

The cell column bit lines multiply the BTL and BTLBAR inputs. The sensory boost, which also 

activates the memory cell in P1 and the sensory boost in P2, is triggered by N3. To shield the internal 

nodes of the sensor amplifier from outside influences, output inverters are necessary [17,18]. 

 

Figure 5: VMSA 

 

 
 

1.6 CLSA  

 

Figure 6: CMSA 
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The internal structure of a current latching amplifier is shown in Figure 6. The circuit is 

covered in great detail in [19, 20]. The CLSA’s SA3 and SA4 observe the voltage variations on the bit 

lines. SA1 and SA2 emerge each time SAEN ascends. A positive feedback loop is established when 

the sensing amplifier’s level is low enough to activate the PMOS device PM16. SA2 splits its inputs 

and outputs to lessen chargeback interference. 

 

2.0 Results Analysis 

 

The SAEN and WL are both high in Figures 7 and 8, even though the VDSA and CLSA are 

in reading mode. Only V3 and V4 can access STSRAM data while the SA is present. 

 

Figure 7: VMSA O/P 

 

 
 

Figure 8: Current Latch Sense Amplifier Output Waveform 

 

 
 

Table 1 shows that the power consumption of single-bit STSRAM VDSA devices decreases 

when resistance increases. The cache memory in Table 2 uses a single-bit STSRAM CLSA design, 

which uses less power. 
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Table 1: Different Cache Memory Design Parameters are Employed for  

Single Bit STSRAM VDSA Architecture 

 

Parameters 
Single Bit STSRAM VDSA Architecture 

Delay in Sensing Consumption of Power 

R=42.3Ω 25.25ηs 13.16µW 

R=42.3KΩ 25.25ηs 11.34µW 

 

Table 2: Design considerations for Single Bit STSRAM CLSA  

Architecture Cache Memory 

 

Parameters 
Single Bit STSRAM CLSA Architecture 

Delay in Sensing Consumption of Power 

R=42.3Ω 25.25ηs 81.78µW 

R=42.3KΩ 25.25ηs 30.12µW 

 

3.0 Conclusion 

 

It is feasible to enhance the cache memory properties of voltage differential sense amplifiers 

and current latch sense amplifiers by increasing the resistance (R) in the design. The number of 

transistors, the amount of power consumed, and the sensor’s response time. One strategy for cutting 

power usage is to use single-bit memory blocks. A voltage differential sensing amplifier and a static 

random access memory cell with six transistors are used to create a single-bit cache memory. 
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