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ABSTRACT 

 

The present paper is to study of an effect of heat source on mixed convective heat transfer of non-Newtonian 
fluids through porous medium on a flat plate has been investigated using a modified power – law viscosity 
model. This model does not contain physically unrealistic limits of zero or infinite viscosity as are encountered 
in the boundary - layer formulation with traditional models of viscosity for power – law fluids through porous 
medium with magnetic field. These unrealistic limits can introduce an irremovable singularity at the leading 
edge; The present modified model matches well with the measurement of viscosity, and does not introduce 
irremovable singularities. Therefore, the boundary layer equations can be solved by marching from the leading 
edge downstream as for Newtonian fluids. The numerical results are presented for a shear-thinning fluid in 
terms of the velocity and temperature distribution, and for important physical properties, namely the wall shear 
stress and heat transfer rates. 
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1.0 Introduction 

 
Free convection can have significant effects on 

forced flows over solid bodies. It can alter the flow 
field and, hence 

the heat transfer rate and the wall shear stress. 
Such effects are particularly enhanced for high-speed 
rotating machineries due to their large centrifugal 
forces. The effect of natural convection is 
accumulative so it cannot be ignored even when the 
flow acceleration is small. The simplest physical 
model is a two-dimensional mixed forced and free 
convection along a flat plate. Understanding of 
fundamental mechanism of this interaction can help 
to estimate more accurately the heat transfer rate and 
pumping power for complex geometries of practical 
interest in order to prevent unnecessary burn-out of 
heated surfaces. 

The interest in heat transfer problems 
involving power-law, a non-Newtonian fluid has 
grown persistently in the past half century. An 
excellent sequence of lectures on non-Newtonian 
fluids was given by Hinch [1]. It appears that Acrivos 
[2], a frequently cited paper, was the first to consider 
boundary – layer flows for such fluids. Since then, a 

large number of related papers have been published 
due to their wide relevance in chemicals, foods, 
polymers, molten plastics and petroleum production, 
and other natural phenomena. A complete literature 
survey would be impractical; a few references, which 
can be used as starting points for a more extensive 
search [3-13], are listed here. 

Two widespread mistakes appear continuously 
in papers studying boundary-layers involving the 
traditional two-parameter power-law model of non-
Newtonian fluids (see Bird et al. [14]). 

The first is that few authors recognize that 
length scale is associated with the power-law 
correlation. Due to this length scale, boundary layer 
problems with power – law, non-Newtonian fluids 
cannot have simple self-similar solutions. It is 
nevertheless a common practice to ignore, without 
justification, the dependence of boundary – layer 
solutions on the steam wise coordinate. It has been 
demonstrated in [15] that such a self –similar solution 
is actually only valid at the leading edge of the 
boundary-layer. This similarity solution is the 
required upstream condition at the leading edge of the 
flat plate to integrate boundary-layer equations along 
the stream wise direction. 

http://www.journalpressindia.com/MJCM
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The second concern is related to the unrealistic 
physical results, introduced by the traditional power-
law correlation, that viscosity either vanishes or 
becomes infinite in the limit of large or small shear 
rates, respectively. This usually occurs at the leading 
edge of a flat plate, or along the outer edge of 
boundary – layers where the boundary – layer 
matches with the outer inviscid flow. Thus, 
traditional power-law correlations introduce non-
removable singularities into boundary-layer 
formulations for infinite or zero viscosity. Without 
recognizing the cause of such unrealistic conditions, 
complex multi-layer structures have been introduced 
by many authors, for example, Denier et al. [12-13], 
to overcome certain mathematical difficulties in order 
to obtain solutions of a non-physical formulation, or a 
false starting process has been used to integrate 
boundary-layer equations from slightly downstream 
of the leading edge in order to avoid the irremovable 
singularity there [8-9]. 

A recently proposed modified power-law 
correlation is sketched for a number of values of the 
power index ‘n’. It is clear that this new correlation 

does not contain physically unrealistic limits of zero 
and infinite viscosities as do traditional power-law 
correlations. The modified power-law, in fact, fits 
measured viscosity data better. The constants in the 
proposed model are fixed with available 
measurements and described in detail in [15], where 
the boundary-layer formulation on a flat plate is 
described and numerically solved. The associated 
heat transfer for two different heating conditions is 
reported [16]. A shear-thinning fluid, whose power-
law index is 0.95, slightly different from Newtonian 
fluids for which n = 1, was selected in the study of 
[15-16]. In [17-19], this analysis is extended to fluids 
whose power-law indexes are 0.6, 0.8, 1, 1.2 and 1.4 
in order to fully demonstrate the effect of non-
Newtonian fluids. In this paper, results for mixed 
convection of non-Newtonian fluids along a vertical 
flat plate using the modified power-law model for 
shear – thinning fluid are presented. A similar 
analysis for natural convection along a vertical heated 
flat plate appears in [20]. Recently, Molla and Yao 
[22] have studied on mixed convection of non-
Newtonian fluids along a heated vertical flat plate, It 
is known [21] that length scale exists for mixed 
convection boundary-layers for Newtonian fluids due 
to the interaction of the forced and the free 

convections; hence, there is no similarity solution for 
mixed convection boundary-layers. On the other 
hand, the Nusselt number and shear stress 
distributions can be well correlated in terms of this 
length scale for all combination of the Reynolds and 
Rayleigh numbers since the flows are laminar. This is 
not true for non-Newtonian fluids, since the new 
length scale, introduced into the formulation by the 
traditional power-law correlation, becomes the 
dominant length scale of mixed convection boundary-
layers for power-law fluids through porous medium 
with magnetic field and heat source. This will be 
demonstrated by numerical results presented in 
section 3. 

 

2.0 Formulation of Problem 

 

A steady laminar boundary-layer of a non-
Newtonian fluid through porous medium with 
magnetic field along a semi-infinite heated flat plate 
with heat source has been studies. The viscosity 
depends on the shear rate and is correlated by a 
modified power-law for shear-thinning non-
Newtonian fluids. It is assumed that the surface 

temperature of the plate Tw, wherew  Here 
T∞ ambient temperature of the fluid and T is the 

temperature of the fluid. The coordinate system is 
shown in Fig. 1. 
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The constant  are threshold shear 
rates, ρ is the density of the fluid, and k is a 

dimensional constant, whose dimension depends on 
the power – law index n. the values of these constants 
can be determined by matching with measurements. 
Outside of the above range, viscosity is assumed 
constant; its value can be fixed with data given in. 

The boundary conditions for the present 
problem are 

 
Where U0 is the free steam velocity 

We now introduce the following non – 
dimensional transformulations 

 
Where v1 is the reference viscosity, θ is the 

dimensionless temperature of the fluid, Re is the 
Reynolds number and Gr is the Grashof number. The 
length scale is 

 
Substituting variables (6a) into Eqs. (1) - (4) 

leads to the following non-dimensional equations 

 
Where Pr is the Prandtl number. The physical 

meaning of  presents the ratio of the 
length scale that the non-Newtonian effect becomes 
apparent and the length scale that the natural 

convection effect grows dominant. For larger  it 
takes shorter distance for the effect of natural 
convection becomes dominant. 

The boundary conditions (5) become 

 
Next the equations are transformed to 

parabolic coordinates [21] 

 
In order to remove the singularity at the 

leading edge, and to minimize the variation of the 
boundary-layer thickness for computational 
convenience. Consequently, Eqs. (7) - (9) become 

 
The correlation (16) is a modified power-law 

correlation first presented by Yao and Molla [15], 
This correlation describes that if the shear rate |γ| lies 

between the threshold shear rates γ1 and γ2 then the 

non-Newtonian viscosity, D, varies with the power-
law of γ. On the other hand, if the shear rate | γ | do 

not lie within this range, then the non-Newtonian 
viscosities are different constants as shown in. This is 
property of many measured viscosities. 

Eqs. (13) - (15) can be solved by marching 
downstream with the upstream condition satisfying 
the following differential equations. 
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Which are the limits of Eqs. (17) - (19) as 

The corresponding boundary conditions are 

 
Eqs. (13) - (15) and (17) – (19) are discredited 

by a central – difference scheme for the diffusion 
term and a backward-difference a scheme for the 
convection terms; finally we get a system of implicit 
tridiagonal algebraic system of equations. The 
algebraic equations have been solved by a double – 
sweep technique. In the computation the continuity 
equation is directly solved for the normal velocity 
component V. hence, the truncation errors are 

 
The physical quantities of principle interest are 

the wall shear stress in terms of the skin – friction 
coefficient Cf and the rate of the heat transfer in terms 
of the Nusselt number Nu, which are, respectively, 

 
 
3.0 Results and Discussion 

 
Numerical results are presented for the case of 

a non-Newtonian power-law fluid of shear – thinning 
(n = 0.6) case along with Newtonian fluid (n =1.0) for 
the value of the Prandtl number Pr =1.2. 
Computations have been done for threshold shear 
rates limits of γ1= 0.1 and γ2 =105 and for two values 

of the mixed convection parameter Gr/Re2 (= 0.1 or 
1.0). The non-dimensional viscosity, D, given by the 
modified power-law correlation, which is plotted in 
as a function of the non-dimensional shear rate γ. The 

singularity experienced at the leading edge for the 
traditional power-law correlation has been 
successfully removed without any difficulty by using 
the present modified power-law correlation. Since the 
shear stress at the leading edge is inversely 

proportional to  it is infinite there, and D 

 at the leading edge. 
The velocity distribution as a function of η at 

selected ξ locations for the power law index n = 0.6 

are depicted in Figures – (1) and (2) for Gr/Re2 = 0.1 
and Gr/Re2 =1.0, respectively at ξ = 0, the velocity 
distribution is the forced convection similarity 
velocity profile, from figures – (1) and (2), it is 
observed that the natural convection has a significant 
influence on the flow field. For Gr/Re2 = 0.1, it takes 
longer distance for the natural convection effect 
becomes dominant. On the other hand, for Gr/Re2 
=1.0, the natural convection takes short distance 
becomes the dominant mode. The velocity 
distribution is the natural convection has a significant 
influence on the flow field for porosity. The velocity 
distribution increases due to increase the value of 
porosity parameter (K) in figure – (3). 

The corresponding temperature distributions 
are plotted Figures - (4), (5) and (6), respectively, for 
different values of ξ , Pr and S at Gr/Re2 = 0.1, the 
temperature distribution is larger than any other 
location since, near ξ =1, In figure – (4), the 
temperature distribution is enhanced due the 
combined mode of forced and natural convection. On 
the other hand, the temperature distribution decreases 
as increase in the case of ξ, which is expected due to 

the natural convection mode. In figure – (5), the 
temperature distribution decreases due to increase the 
values of Pr for natural convection. In figure – (6), 
the temperature distribution increases due to increase 
the values of heat source parameter S for the 
combined mode of forced and natural convection. 

The axial distribution of the skin – friction 

coefficient  and the Nusselt number 
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 are derived in equations – (21) and (22), 
respectively, for Pr = 1.2, n = 0.6 and Gr/Re2 = 0.1, 
with the forced convection limit. It is observed that 
the forced convection solutions coincide with the full 
mixed convection solutions for comparison, we have 
provided only forced convection solutions because 
the forced convection and the mixed convection 
length scales are same for the non-Newtonian fluids, 
but it is difficult to compare with the mixed and free 
convection solutions due to the different length scales 
[20]. They clearly show that the free convection 
effects grow faster for larger Gr/Re2. The data for the 
Newtonian fluids (n =1) with shear-thinning non-
Newtonian fluid (n = 0.6) to contrast the differences 
of the two fluids. From this comparison it is observed 
that the skin-friction coefficient decreases and the 
Nusselt number increases for the shear – thinning 

fluid. Which can correlate and  
into a single curve for all combination of Gr and Re 
for Newtonian fluids [21]. But not for non-Newtonian 
fluids. This indicates that the length scale introduced 
by the interaction of forced and free convections is 
not the proper length scale for non-Newtonian fluids. 
Consequently, we use the length scale associated with 
the power-law in the current study. 
 
4.0 Conclusions 

 
The proposed modified power-law correlation 

fits well with the actual measurement of viscosities 
for non-Newtonian fluids; consequently it does not 
contain physically unrealistic limits of zero and 
infinite viscosity introduced into the boundary – layer 
formulation by the traditional power-law model. The 
problems associated with the non-removal singularity 
introduced by the traditional power-law correlations 
do not exist for the modified power-law correlation 
proposed in this paper. This means that the similarity 
solution exists at the leading edge, which is the 
natural upstream condition for the non-similar 
boundary layer problem. Therefore, the proposed 
modified power-law correlations can be used to 
investigate other heat transfer problems for shear – 
thinning or shear thickening non-Newtonian fluids on 
boundary – layers. The fundamental mechanism that 
the effect of natural convection eventually becomes 
dominant when the heating length is long is also 
properly demonstrated in our computations. For the 
low heating case with Gr/Re2 = 0.1, the effect of 

natural convection has not reached its fully developed 
stage at =100. 
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