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ABSTRACT 

 

Due to digitization and for security purpose a lot of research has been going on in the wide area of affect 

computing. One of the field under this affect computing is to recognize the human faces with maximum 

accuracy. There are still large numbers of difficulties to recognize the accurate facial expression. In this 

research paper we are going to represent our experimental results for facial recognition by using Principal 

Component Analysis (PCA) algorithm. So in the first section of this paper we discussed some algorithm for 

facial recognition, than compare our results of research with these algorithm. We took Extended Cohn-Kanade 

Dataset(CK+) for experimental results. Our experimental results are implemented in OpenCV. 

 

Keywords: Affect Computing; Face recognition; Principal Component Analysis; Open CV; Cohn-Kanade 

DataSet. 

 

1.0 Introduction 

 

Face recognition is becoming an active 

research area spanning several disciplines such as 

image processing, pattern recognition, computer 

vision, neural networks, cognitive science, 

neuroscience, psychology and physiology. It is a 

dedicated process, not merely an application of the 

general object recognition process. It is also the 

representation of the most splendid capacities of 

human vision. 

 Face detection can be regarded as a specific 

case of object-class detection. In object-class 

detection, the task is to find the locations and sizes of 

all objects in an image that belong to a given class. 

Examples include upper torsos, pedestrians, and cars. 

Early face-detection algorithms focused on the 

detection of frontal human faces, whereas newer 

algorithms attempt to solve the more general and 

difficult problem of multi-view face detection.  

That is, the detection of faces that are either 

rotated along the axis from the face to the observer 

(in-plane rotation), or rotated along the vertical or 

left-right axis (out-of-plane rotation), or both.  

The newer algorithms take into account 

variations in the image or video by factors such as 

face appearance, lighting, and pose. In this paper we 

provide a accurate method to recognize facial 

expression by using PCA algorithm. 

 

2.0 Literature Survey 

 

Face recognition is a biometric which uses 

computer software to determine the identity of the 

individual. Face recognition falls into the category of 

biometrics which is ―the automatic recognition of a 

person using distinguishing traits‖ [6]. Other types of 

biometrics include fingerprinting, retina scans, and 

iris scan. 

 

2.1 Eigenface-based recognition 

2D face recognition using eigenfaces is one 

of the oldest types of face recognition. Turk and 

Pentland published the groundbreaking ―Face 

Recognition Using Eigenfaces‖ in 1991. 

The method works by analyzing face images 

and computing eigenfaces which are faces composed 

of eigenvectors. The comparison of eigenfaces is used 

to identify the presence of a face and its identity. 

There is a five step process involved with 

the system developed by Turk and Pentland. First, the 

system needs to be initialized by feeding it a set of 

training images of faces. 

This is used these to define the face space 

which is set of images that are face like. Next, when a 

face is encountered it calculates an eigenface for it.  
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By comparing it with known faces and using some 

statistical analysis it can be determined whether the 

image presented is a face at all. Then, if an image is 

determined to be a face the system will determine 

whether it knows the identity of it or not. The 

optional final step is that if an unknown face is seen 

repeatedly, the system can learn to recognize it [1]. 

The eigenface technique is simple, efficient, 

and yields generally good results in controlled 

circumstances [1]. The system was even tested to 

track faces on film. There are also some limitations of 

eigenfaces. There is limited robustness to changes in 

lighting, angle, and distance [6]. 2D recognition 

systems do not capture the actual size of the face, 

which is a fundamental problem [4]. 

These limits affect the technique’s 

application with security cameras because frontal 

shots and consistent lighting cannot be relied upon. 
 

2.2 3D Face recognition 

3D face recognition is expected to be robust 

to the types of issues that plague 2D systems [4]. 3D 

systems generate 3D models of faces and compare 

them. These systems are more accurate because they 

capture the actual shape of faces. Skin texture 

analysis can be used in conjunction with face 

recognition to improve accuracy by 20 to 25 percent 

[3].  

The acquisition of 3D data is one of the 

main problems for 3D systems [2]. 
 

2.3 How human perform face recognition 

It is important for researchers to know the 

results of studies on human face recognition [8]. 

Knowing these results may help them develop ground 

breaking new methods. After all, rivaling and 

surpassing the ability of humans is the key goal of 

computer face recognition research. The key results 

of a 2006 paper ―Face Recognition by Humans: 

Nineteen Results All Computer Vision Researchers 

Should Know About‖ are as follows: 

1. Humans can recognize familiar faces in very 

lowresolution images. 

2. The ability to tolerate degradations increases 

with familiarity. 

3. High-frequency information by itself is 

insufficient for good face recognition 

performance. 

4. Facial features are processed holistically. 

5. Of the different facial features, eyebrows are 

among the most important for recognition. 

6. The important configurable relationships 

appear to be independent across the width and 

height dimensions. 

7. Face-shape appears to be encoded in a slightly 

caricatured manner. 

8. Prolonged face viewing can lead to high level 

aftereffects, which suggest prototype-based 

encoding. 

9. Pigmentation cues are at least as important as 

shape cues. 

10. Color cues play a significant role, especially 

when shape cues are degraded. Contrast 

polarity inversion dramatically impairs 

recognition performance, possibly due to 

compromised ability to use pigmentation cues. 

11. Motion of faces appears to facilitate 

subsequent recognition. 

12. The visual system starts with a rudimentary 

preference for face-like patterns. 

13. Motion of faces appears to facilitate 

subsequent recognition. 

14. The visual system starts with a rudimentary 

preference for face-like patterns. 

15. Motion of faces appears to facilitate 

subsequent recognition. 

16. The visual system starts with a rudimentary 

preference for face-like patterns. 
 

Fig 1: Staring at the faces in the green circles will 

cause one to misidentify the central face with the 

faces circled in red. This is an example of face 

aftereffects [8] 

 

 
 

17. The visual system progresses from a piecemeal 

to a holistic strategy over the first several years 

of life. 

18. The human visual system appears to devote 

specialized neural resources for face 

perception. 



An Improved Face Recognition Approach using Principal Component Analysis 17 
 

 

19. Latency of responses to faces in infer temporal 

(IT) cortex is about 120 ms, suggesting a 

largely feed forward computation. 

20. Facial identity and expression might be 

processed by separate systems. 
 

Fig 2: Photograph during the recording of ―We Are 

the World. This figure demonstrates how polarity 

inversion effects face recognition in humans. Several 

famous artists are in the picture including Ray 

Charles, Lionel Ritchie, Stevie Wonder, Michael 

Jackson, Tina Turner, Bruce Springstein, and Billy 

Joel though they are very difficult to identify 

 

 
 

2.4 Face Recognition from a Law Enforcement 

Perspective 

 

Fig 3: Figure depicts increasingly controlled 

environments from left to right. From left to right: 

suspect on a plane (no control), subject at a check-in 

counter, subject on an escalator staring at a flashing 

red bulb, subject passing through a doorway, subject 

sitting in front of a camera (perfect control) [6] 
 

 

Facial recognition is attractive for law 

enforcement. It can be used in conjunction with 

existing surveillance camera infrastructure to hunt for 

know criminals.  

Face recognition is covert and non intrusive, 

opposed to other biometrics such as finger prints, 

retina scans, and iris scans [6]. This is especially 

important in conjunction with the law because faces 

are considered public. Comprehensive photo 

databases from mug shots or driver’s licenses already 

exist. 

Because of difficulties face recognition has 

with respect to lighting, angle, and other factors, it is 

advantageous to attempt to get as high quality images 

with regard to these factors. Facetraps are a concept 

where cameras are strategically placed in order to 

obtain relatively controlled photographs [6]. 

Examples are placing cameras facing doorways, at 

airport check-ins, or near objects people are likely to 

stare at these traps would aid face recognition 

software by helping to capture a straight frontal 

image which allow for higher accuracy of the 

system[4]. Despite their potential benefit, there 

appears to be very little research done on facetraps. 

Some have questioned the legality of face 

scanning and have argued that such systems which 

are used to hunt to criminals in public places are an 

invasion of privacy.  

From a legal perspective, in the United 

States, one does not have a right to privacy for things 

shown in public [6]. ―What a person knowingly 

exposes to the public is not a subject of Fourth 

Amendment protection,‖ United States v. 

Miller, 425 U.S. 435 (1976). ―No person can have a 

reasonable expectation that others will not know the 

sound of his voice, any more than he can reasonably 

expect that his face will be a mystery to the world,‖ 

United States v. Dionisio, 410 U.S. 1 (1973). 

 These excerpts from Supreme Court 

decisions help to establish that face recognition is 

constitutional. 

Face recognition must be improved further 

before it becomes a useful tool for law enforcement. 

It remains to be seen what the right balance is, 

socially speaking, between maximizing public safety 

and respecting individual rights. 
 

2.5 Algorithm analysis for face recognition 

There are large numbers of algorithm for 

face recognition. Some of these algorithms are 

discussed as below: 
 

2.5.1 2 D HMM algorithm 

2D Hidden Markov Model algorithm uses 

following two assumptions for face recognition [15]:- 

Assumption 1 The transition probability of 

state s(i, j) 
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in the model depends on its adjacent neighboring 

states in vertical, horizontal and diagonal directions. 

Suppose there are M states {1, 2, ...,M}, and 

for each block (i, j), i = {1, 2, ..., I}; j = {1, 2, ..., J}, 

where I and J are the numbers of row and 

column blocks in the original image, the feature 

vector is o(i, j), the corresponding hidden state is s(i, 

j), and the class of the block is c(i, j).  

We define the transition probability of state 

s(i, j) and it depends on its adjacent neighboring 

states in vertical, horizontal and diagonal directions. 

and is stated as follows: 

P{s(i, j) = l|s(i−1, j) = m, s(i−1, j−1) = n, 

s(i, j−1) = k} 

= am,n,k,l. (1) 

where m, n, k, ∈ l {1, 2, ...,M} are actual 

values of the state. 

Assumption 2 The feature vector for each 

image block follows a Gaussian Mixture distribution, 

given its corresponding state, and it is independent of 

other feature vectors and their corresponding states. 
 

However these algorithms have following strengths:- 

1. The HMMs can be used for generating 

alignments, with each state of the machine 

corresponding to one column in the alignment.. 

HMMs are a bit more powerful than 

alignments, since the same state can be used 

repeatedly in a path, but each column can only 

be used once in an alignment.  

This results in ambiguous alignments if a 

column alignment model is used, but can be 

quite convenient for describing phenomena 

like random numbers of repeats of a short 

subsequence. 

2. Separate HMMs built for recognizing 

particular structures can be merged to create 

HMMs that recognize sequences of structures. 

Unfortunately doing this cleanly requires a 

slightly different version of HMMs which 

allows null states--states that don't match any 

characters in the input sequence. 

The current version of my HMM code cannot 

handle HMMs with null states, but the 

extension is planned and should be 

straightforward. 

Limitation of HMM algorithm:- 

1. The HMM needs to be trained on a set of seed 

sequences and generally requires a larger seed 

than the simple Markov models. 

2. For a given set of seed sequences, there are 

many possible HMMs, and choosing one can 

be difficult. Smaller models are easier to 

understand, but larger models can fit the data 

better 

3. HMM is quite expensive to implement in term 

of memory and compute time. 

2.5.2 Minimum average correlation energy filter 

(MACE) algorithm 

Suppose we have N facial images from a 

certain person. We consider each 2-dimensional 

image as a d×1 

column vector xi (i = 1, 2. . . N) by 

lexicographically reordering the image, where d is the 

number of pixels. The discrete Fourier transform 

(DFT) of xi is denoted by Xi, and we define the 

training image data matrix in frequency domain as X 

= [X1 X2 . . . XN]. X is a d × N matrix [13]. 

Let the vector h be the correlation filter 

(correlation template) in the space domain and H be 

its Fourier transform. The correlation result of the ith 

image and the filter could be written as 

ci(m, n) = h(m, n) o xi(m, n) = (h, Xim,n ) 

…………(2) 

Where o denotes correlation, and (,) denotes 

inner product of two vectors.  

Here xm,n i is a vector obtained by 

circularly shifting the ith training image by m pixels 

horizontally and n pixels vertically, and reorder it to a 

1-dimensional vector. Keep in mind that h and xi are 

both 1- 

dimensional vectors obtained by reordering 

a 2-dimensional array. Since the correlation actually 

operates on a 2-dimensional plane, here we use two 

indices, m and n, to indicate the elements in these 

vectors. 

The objective of the MACE filter is to 

minimize the average correlation energy over the 

image class while simultaneously satisfying an linear 

constraint that the correlation values at the origin due 

to training images take on pre-specified values stored 

in vector u, where u = [u1 u2 · · · uN]T . 

i.e. ci(0, 0) = Xi†H = ui (3) 

The average correlation energy over all 

training images is Eavg = H†DH where D is 

summation of all i values. 

Minimize Eavg subject to the constraint, 

X†H = u. The solution can be obtained using 

Lagrange multipliers: 

H = D−1X(X†D−1X)−1u (4) 

 

2.5.3 Linear discriminant analysis algorithm 

In Linear discriminant analysis following 

steps are used to discriminant the input images: 

1. First of all we need a training set composed of 

a relatively large group of subjects with 

diverse facial characteristics. The appropriate 

selection of the training set directly determines 

the validity of the final results. The database 

should contain several examples of face 

images for each subject in the training set and 

at least one example in the test set. These 

examples should represent different frontal 

views of subjects with minor variations in  
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view angle. They should also include different 

facial expressions, different lighting and 

background conditions, and examples with and 

without glasses. It is assumed that all images 

are already normalized to m × n arrays and that 

they contain only the face regions and not 

much of the subjects’ bodies [16]. 

2. For each image and sub image, starting with 

the two dimensional m × n array of intensity 

values I(x, y), we construct the vector 

expansion Φ_ R m× n. This vector corresponds 

to the initial representation of the face. Thus 

the set of all faces in the feature space is 

treated as a high-dimensional vector space. 

3. By defining all instances of the same person’s 

face as being in one class and the faces of 

different subjects as being in different classes 

for all subjects in the training set, we establish 

a framework for performing a cluster 

separation analysis in the feature space. Also, 

having labeled all instances in the training set 

and having defined all the classes, we compute 

the within-class and between-class scatter 

matrices. So finally we synthesized the face 

recognition. 
 

3.0 Proposed System 

 

3.1 Principal componant analysis algorithm 

Principal component analysis (PCA) is a 

statistical procedure that uses an orthogonal 

transformation to convert a set of observations of 

possibly correlated variables into a set of values of 

linearly uncorrelated variables called principal 

components.  

The number of principal components is less 

than or equal to the number of original variables. 

This transformation is defined in such a way 

that the first principal component has the largest 

possible variance (that is, accounts for as much of the 

variability in the data as possible), and each 

succeeding component in turn has the highest 

variance possible under the constraint that it is 

orthogonal to (i.e., uncorrelated with) the preceding 

components.  

The principal components are orthogonal 

because they are the eigenvectors of the covariance 

matrix, which is symmetric.  

PCA is sensitive to the relative scaling of the 

original variables. In the case of Face Recognition 

system based on PCA, it seeks to capture the 

variation in a collection of face images and use this 

information to encode and compare images of 

individual faces in a holistic manner.  

When all the face images are converted into 

vectors, they will group at a certain location in the 

image space as they have similar structure, having 

eye, nose and mouth in common and their relative 

position correlated.  

This correlation is the main point to start the 

Eigen-face analysis. 
 

3.2 Detail description of PCA 

PCA is mathematically defined as an 

orthogonal linear transformation that transforms the 

data to a new coordinate system such that the greatest 

variance by some projection of the data comes to lie 

on the first coordinate (called the first principal 

component), the second greatest variance on the 

second coordinate, and so on[8]. 

Consider a data matrix, X, with column-wise 

zero empirical means (the sample mean of each 

column has been shifted to zero), where each of the n 

rows represents a different repetition of the 

experiment, and each of the p columns gives a 

particular kind of datum (say, the results from a 

particular sensor). 

Mathematically, the transformation is 

defined by a set of p-dimensional vectors of weights 

or loadings 

 that map 

each row vector 

 of X to a new vector of principal 

component scores  

 given by 

 
In such a way that the individual variables of 

t considered over the data set successively inherit the 

maximum possible variance from x, with each 

loading vector w constrained to be a unit vector. 

Eventually maximum possible variance from X has 

been formed from the desired data set. According we 

have to calculate first component of PCA, covariance 

of PCA has to satisfy some equation to find the final 

solution of any recognition from data set. 
 

3.2.1 First component of PCA 

The first loading vector w(1) thus has to 

satisfy 

 
The quantity to be maximised can be 

recognised as a Rayleigh quotient. A standard result  
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for a symmetric matrix such as XTX is that the 

quotient's maximum possible value is the largest 

eigenvalues of the matrix, which occurs when w is 

the corresponding eigenvector. 
 

3.2.2 K
th

 Componant of PCA 

The kth component can be found by 

subtracting the first k − 1 principal components from 

X: 

 
and then finding the loading vector which 

extracts the maximum variance from this new data 

matrix. It turns out that this gives the remaining 

eigenvectors of XTX, with the maximum values for 

the quantity in brackets given by their corresponding 

eigenvalues. 

The full principal components 

decomposition of X can therefore be given as 

 
Where W is a p-by-p matrix whose columns 

are the eigenvectors of XTX 

 

3.2.3 Covariances of PCA 

The sample covariance Q between two of 

the different principal components over the dataset is 

given by: 

 
Where the eigenvalue property of w(k) has 

been used to move from line 2 to line 3. However 

eigenvectors w(j) and w(k) corresponding to 

eigenvalues of a symmetric matrix are orthogonal (if 

the eigenvalues are different), or can be 

orthogonalised (if the vectors happen to share an 

equal repeated value). The product in the final line is 

therefore zero; there is no sample covariance between 

different principal components over the dataset. 

Another way to characterise the principal 

components transformation is therefore as the 

transformation to coordinates which diagonalise the 

empirical sample covariance matrix. 

In matrix form, the empirical covariance 

matrix for the original variables can be written 

 

 
The empirical covariance matrix between 

the principal components becomes 

 
Where Λ is the diagonal matrix of 

eigenvalues λ(k) of XTX 

λ(k) being equal to the sum of the squares 

over the dataset associated with each component k: 

λ(k) = Σi tk2(i) = Σi (x(i). 
 

3.2.4 Dimensionally reduction 

The faithful transformation T = X W maps a 

data vector x(i) from an original space of p variables 

to a new space of p variables which are uncorrelated 

over the dataset. However, not all the principal 

components need to be kept. Keeping only the first L 

principal components, produced by using only the 

first L loading vectors, gives the truncated 

transformation 

 
Where the matrix TL now has n rows but 

only L columns. In other words, PCA learns a linear 

transformation 

 

where the columns of  matrix W form 

an orthogonal basis for the L features (the 

components of representation t) that are decorrelated. 

By construction, of all the transformed data matrices 

with only L columns, this score matrix maximises the 

variance in the original data that has been preserved, 

while minimising the total squared reconstruction 

error or  

 
 

Fig 4: A principal components analysis scatterplot of 

YSTR haplotypes calculated from repeat-count 

values for 37 Y-chromosomal STR markers from 354 

individuals. PCA has successfully found linear 

combinations of the different markers that separate 

out different clusters corresponding to different lines 

of individuals' Y-chromosomal genetic descent. 
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Such dimensionality reduction can be a very 

useful step for visualising and processing high-

dimensional datasets, while still retaining as much of 

the variance in the dataset as possible. For example, 

selecting L = 2 and keeping only the first two 

principal components finds the two-dimensional 

plane through the high-dimensional dataset in which 

the data is most spread out, so if the data contains 

clusters these too may be most spread out, and 

therefore most visible to be plotted out in a two-

dimensional diagram; whereas if two directions 

through the data (or two of the original variables) are 

chosen at random, the clusters may be much less 

spread apart from each other, and may in fact be 

much more likely to substantially overlay each other, 

making them indistinguishable[12]. 

Similarly, in regression analysis, the larger 

the number of explanatory variables allowed, the 

greater is the chance of overfitting the model, 

producing conclusions that fail to generalise to other 

datasets. One approach, especially when there are 

strong correlations between different possible 

explanatory variables, is to reduce them to a few 

principal components and then run the regression 

against them, a method called principal component 

regression. 

Dimensionality reduction may also be 

appropriate when the variables in a dataset are noisy. 

If each column of the dataset contains independent 

identically distributed Gaussian noise, then the 

columns of T will also contain similarly identically 

distributed Gaussian noise (such a distribution is 

invariant under the effects of the matrix W, which can 

be thought of as a high-dimensional rotation of the 

co-ordinate axes).  

However, with more of the total variance 

concentrated in the first few principal components 

compared to the same noise variance, the 

proportionate effect of the noise is less—the first few 

components achieve a higher signal-to-noise ratio. 

PCA thus can have the effect of concentrating much 

of the signal into the first few principal components, 

which can usefully be captured by dimensionality 

reduction; while the later principal components may 

be dominated by noise, and so disposed of without 

great loss. 
 

3.2.5 Properties and limitations of PCA 

Property 1: For any integer q, 1 ≤ q ≤ p, 

consider the orthogonal linear transformation 

 
Where is a q-element vector and is a (q × p) 

matrix, and let be the variance-covariance matrix for . 

Then the trace of , denoted , is maximized by taking , 

where consists of the first columns of is the 

transposition of . 

Property 2: Consider again the orthonormal 

transformation 

 
The statistical implication of this property is 

that the last few PCs are not simply unstructured left-

overs after removing the important PCs. Because 

these last PCs have variances as small as possible 

they are useful in their own right. They can help to 

detect unsuspected near-constant linear relationships 

between the elements of  and they may also be 

useful in regression, in selecting a subset of variables 

from  and in outlier detection. 

 

Property 3: the Spectral Decomposition of 

 
Before we look at its usage, we first look at 

diagonal elements, 

 
Then, perhaps the main statistical 

implication of the result is that not only can we 

decompose the combined variances of all the 

elements of into decreasing contributions due to 

each PC, but we can also decompose the whole 

covariance matri into 

 

 
Following are the limitation of PCA 

1. The results of PCA depend on the scaling of 

the variables. A scale-invariant form of PCA 

has been developed. 

2. The applicability of PCA is limited by certain 

assumptions made in its derivation. 
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3.2.6 Computing PCA using the covariance 

method 

The following is a detailed description of 

PCA using the covariance method. But note that it is 

better to use the singular value decomposition (using 

standard software). 

The goal is to transform a given data set X 

of dimension p to an alternative data set Y of smaller 

dimension L. Equivalently, we are seeking to find the 

matrix Y, where Y is the Karhunen–Loève transform 

(KLT) of matrix X: 

 

 

1. Organize the data Set 

Suppose you have data comprising a set of 

observations of p variables, and you want to reduce 

the data so that each observation can be described 

with only L variables, L < p. Suppose further, that the 

data are arranged as a set of n data vectors 

 with each  representing a 

single grouped observation of the p variables. 

 Write  as row vectors, 

each of which has p columns. 

 Place the row vectors into a single matrix X of 

dimensions n × p. 
 

2. Calculate the empirical mean 

 Find the empirical mean along each dimension 

j = 1... p. 

 Place the calculated mean values into an 

empirical mean vector u of dimensions p × 1. 
 

 
 

3. Calculate the deviations from the mean 

 

Mean subtraction is an integral part of the 

solution towards finding a principal component basis 

that minimizes the mean square error of 

approximating the data [12]. Hence we proceed by 

centering the data as follows: 

 Subtract the empirical mean vector u from 

each row of the data matrix X. 

 Store mean-subtracted data in the n × p matrix 

B. 

 
Where h is an n × 1 column vector of all 1s: 

 

 

4. Find the Covariance Matrix 

 

 Find the p × p empirical covariance matrix C 

from the outer product of matrix B with itself: 

 

Where  is the conjugate transpose 

operator. Note that if B consists entirely of real 

numbers, which is the case in many applications, the 

"conjugate transpose" is the same as the regular 

transpose. 

 Please note that outer products apply to 

vectors. For tensor cases we should apply 

tensor products, but the covariance matrix in 

PCA is a sum of outer products between its 

sample vectors; indeed, it could be represented 

as B*.B. See the covariance matrix sections on 

the discussion page for more information. 

 The reasoning behind using N-1 instead of N 

to calculate the covariance is Bessel's 

correction. 
 

5. Find the eigenvectors and eigenvalues of the 

covariance matrix 

 Compute the matrix V of eigenvectors which 

diagonalizes the covariance matrix 

C: 

 
where D is the diagonal matrix of 

eigenvalues of C. This step will typically involve the 

use of a computer-based algorithm for computing 

eigenvectors and eigenvalues. These algorithms are 

readily available as sub-components of most matrix 

algebra systems. Matrix D will take the form of an p 

× p diagonal matrix, where 

 
is the jth eigenvalue of the covariance matrix 

C, and 

 
 Matrix V, also of dimension p × p, contains p 

column vectors, each of length p, which 

represent the p eigenvectors of the covariance 

 

 The eigenvalues and eigenvectors are ordered 

and paired. The jth eigenvalue corresponds to 

the jth eigenvector. 
 

6. Rearrange the eigenvectors and eigenvalues 

 

 Sort the columns of the eigenvector matrix V 

and eigenvalue matrix D in order of decreasing 

 

 Make sure to maintain the correct pairings 

 

 

7. Compute the cumulative energy content for 

each eigenvector 
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The eigenvalues represent the distribution of 

the source data's energy among each of the 

eigenvectors, where the eigenvectors form a basis for 

the data. The cumulative energy content g for the jth 

eigenvector is the sum of the energy content across 

all of the eigenvalues from 1 through j: 

 

8. Select a subset of the eigenvectors as basis 

vectors 

 

 Save the first L columns of V as the p × L 

matrix W: 

Where 

 
 Use the vector g as a guide in choosing an 

appropriate value for L. The goal is to choose a 

value of L as small as possible while achieving 

a reasonably high value of g on a percentage 

basis. For example, you may want to choose L 

so that the cumulative energy g is above a 

certain threshold, like 90 percent. In this case, 

choose the smallest value of L such that 

 
 

9 Convert the source data to Z-scores 

 Create an p × 1 empirical standard deviation 

vector s from the square root of each element 

along the main diagonal of the diagonalized 

covariance matrix C. (Note, that scaling 

operations do not commute with the KLT thus 

we must scale by the variances of the already-

decorrelated vector, which is the diagonal of 

C) : 

 
 

10 Project the Z-scores of the data onto the new 

basis 

 The projected vectors are the columns of the 

matrix 

 
The rows of matrix T represent the 

Karhunen–Loeve transforms (KLT) of the data 

vectors in the rows of matrix X. 
 

3.3 PCA apporach for eigen faces 

 

 
 

3.4 Flow chart for face ecognition using PCA 

Face recognition by using PCA has been 

implemented on following figure. Feature extraction 

from the data set has been calculated from PCA 

algorithm. 
 

Fig 5: Flow Chart for Face Recognition using PCA 
 

 
 

4.0 Experimental Results 

 

Our experimental result shows the following 

comparison chart of various algorithms. Among these 

we find PCA is efficient algorithm depending on 

eigen face value detection. 
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Fig 6: Accuracy Experimental Graph between 

Various 

 

 
 

Depending on the CK+ dataset following are 

the experimental results by PCA. 
 

Fig 7: Illustration of our Experimental Result 

Depending Upon Dataset 

 

 
 

Now we implement the PCA algorithm on 

this test data base, crop the every single image and 

find the eigen values for every image. Compare our 

result with others algorithms and find the accuracy 

recognition for facial images. 

Accuracy chart achieved by PCA is as 

follows: 
 

Fig 8: Recognition Accuracy vs. Dimensionality 

Reduction on CK+ Data Set 

 

 

5.0 Conclusion and Future Scope 

 

The manifold ways of face analysis 

(representation and recognition) is introduced in this 

paper in order to detect the underlying nonlinear 

manifold structure in the manner of linear subspace 

learning. To the best of our knowledge, this is the 

first devoted work on face representation and 

recognition which explicitly considers the manifold 

structure.  

The manifold structure is approximated by 

the adjacency graph computed from the data points. 

Using the notion of the PCA of the graph, we then 

compute a transformation matrix which maps the face 

images into a face subspace. . This linear 

transformation optimally preserves local manifold 

structure. Theoretical analysis of PCA is provided. 

Experimental results on CK+ databases show the 

effectiveness of our method [18]. 

One of the central problems in face manifold 

learning is to estimate the intrinsic dimensionality of 

the nonlinear face manifold, or, degrees of freedom. 

We know that the dimensionality of the manifold is 

equal to the dimensionality of the local tangent space. 

Some previous works show that the local tangent 

space can be approximated using points in a neighbor 

set.  

Therefore, one possibility is to estimate the 

dimensionality of the tangent space. Another possible 

extension of our work is to consider the use of the 

unlabeled samples. It is important to note that the 

work presented here is a general method for face 

analysis (face representation and recognition) by 

discovering the underlying face manifold structure. 

Learning the face manifold is essentially an 

unsupervised learning process. And in many practical 

cases, one finds a wealth of easily available unlabeled 

samples. These samples might help to discover the 

face manifold.  

For example, it is shown how unlabeled 

samples are used for discovering the manifold 

structure and hence improving the classification 

accuracy. Since the face images are believed to reside 

on a sub-manifold embedded in a high-dimensional 

ambient space, we believe that the unlabeled samples 

are of great value. We are currently exploring these 

problems in theory and practice. 
 

References 
 

[1] Felix Juefei-Xu, Student Member, IEEE, and 

Marios Savvides, Member, IEEE,, Subspace-

Based Discrete Transform Encoded Local 

Binary Patterns Representations for Robust 

Periocular Matching on NIST’s Face 

Recognition Grand Challenge, IEEE 

Transactions on Image Processing, 23(8), 

2014. 



An Improved Face Recognition Approach using Principal Component Analysis 25 
 
 

[2] Rabia Jafri, Hamid R. Arabnia, A Survey of 

Face Recognition Techniques, Journal of 

Information Processing Systems,5(2),2009. 
 

[3] L. Sirovich, M. Kirby, Low-dimensional 

procedure for the characterization of human 

faces. Journal of the Optical Society of 

America A - Optics, Image Science and 

Vision, 4(3):519–524, 1987. 
 

[4] M. Kirby and L. Sirovich. Application of the 

karhunen- Stan Z. Li, Feature Correlation 

Filter for Face Recognition, loeve procedure 

for the characterization of human faces. IEEE 

Transactions on Pattern Analysis and Machine 

Intelligence, 12(1):103–108, 1990. 
 

[5] M. Turk, A. Pentland. Eigenfaces for 

recognition. Journal of Cog- nitive 

Neurosicence, 3(1):71–86, 1991. 
 

[6] B. Dudley. ‖e3: New info on Microsoft's natal 

– how it works, multiplayer and pc versions‖. 

The Seattle Times, 2009. 
 

[7] K. Massy. Toyota develops eyelid-monitoring 

system‖. Cnet reviews, 2008. 
 

[8] M. McWhertor. ‖sony spills more ps3 motion 

controller details to devs‖. Kotaku. Gawker 

Media, 2009. http://kotaku.com/5297265/sony-

spills-more-ps3-motion-controllerdetails- to-

devs. 
 

[9] T. Kanade, Computer Recognition of Human 

Faces, Brikhauser Verlag, Basel and Stuttgart, 

ISR-47, 1-106, 1977 

 

[10] L. Wiskott, J. M. Fellous, N. Kruger, C. V. 

Malsburg, Face Recognition by Elastic Bunch 

Graph Matching, IEEE Transactions on Pattern 

Analysis and Machine Intelligence (PAMI), 

19(7), 775-779, 1997 

 

[11] K. Chung, S. C. Kee, S. R. Kim, Face 

Recognition using Principal Component 

Analysis of Gabor Filter Reponses, in 

Proceedings of International Workshop on 

Recognition, Analysis and Tracking of Faces 

and Gestures in Real-time Systems, 53-57, 

1999. 
 

[12] A. Pentland, B. Moghaddam, T. Starner, View-

based and Modular Eigen spaces for 

FaceRecognition, in Proceeding of IEEE 

International Conference on Computer Vision 

and Pattern Recognition (CVPR’94), 84-91, 

1994. 
 

[13] D. J. Sturman, D. Zetler, A Survey of Glove-

Based Input, IEEE Computer Graphics and 

Applications, 14, 30-39, 1994. 
 

[14] V. I. Pavlovic, R. Sharma, T. S. Huang, Visual 

Interpretation of Hand Gestures for Human-

Computer Interaction: A Review, IEEE 

Transactions on Pattern Analysis and Machine 

Intelligence (PAMI), 19(7), 677-695, 1997. 
 

[15] T. Kenade. Picture Processing System by 

Computer Complex and Recognition of 

Human Faces. Kyoto University, November 

1973 

 

[16] Patrick Lucey1;2, Jeffrey F. Cohn1;2, Takeo 

Kanade1, Jason Saragih1, Zara Ambadar, The 

Extended Cohn-Kanade Dataset (CK+): A 

complete dataset for action unit and emotion-

specified expression, Disney Research, 4615 

Forbes Ave, Pittsburgh, PA 15213. 
 

[17] Xiangxin Zhu, Shengcai Liao, Zhen Lei, Rong 

Liu, and Center for Biometrics and Security 

Research & National Laboratory of Pattern 

Recognition, Institute of Automation, Chinese 

Academy of Sciences, 95 Zhongguancun East 

Road, 100080 Beijing, China. 
 

[18] Xiaofei He, Shuicheng Yan, Yuxiao Hu, 

Partha Niyogi, Hong-Jiang Zhang, Face 

Recognition Using Laplacianfaces, Microsoft 

Research Asia, Beijing 100080, China. 

 


