
International Journal of Advance Research and Innovation

Vol. 2(2), Apr-Jun 2014, pp. 29-42

Doi: 10.51976/ijari.221405

www.gla.ac.in/journals/ijari

© 2014 IJARI, GLA University

Article Info

Received: 05 Mar 2014 | Revised Submission: 20 Apr 2014 | Accepted: 28 May 2014 | Available Online: 15 Jun 2014

*Department of Computer Science and Engineering, TMU, Moradabad, Uttar Pradesh, India

(E-mail: Jassy790@gmail.com)

Advanced Optimization of Fundamental Searching and Sorting Algorithms

Jasrat Singh*

ABSTRACT

Searching and Sorting are the most important data structure operations, which make easy searching, arranging

and locating the information. One of the basic problems of computer science is sorting a list of items and

searching elements in the array. There are a number of solutions to these problems, known as sorting algorithm,

and searching algorithm. Some searching algorithms are simple and spontaneous, such as the Linear Search,

Binary Search. All searching algorithms are problem specific meaning they work well on some specific problem

and do not work well for all the problems, therefore, appropriate for specific kinds of problems. Some searching

algorithm works on less number of elements. There are some fundamental sorting algorithms as Selection Sort,

Insertion Sort, Quick Sort, Merge Sort, Bubble Sort etc. After studying various sorting and searching algorithms

we found that the algorithms can be optimised. This paper presents a new searching algorithms named as

“OBSwQS” is designed to perform searching quickly and more effectively as compared to the existing version

of searching algorithm in which there are used the concepts of Binary Search and Quick Sort algorithms, and

the optimised sorting algorithms as “DNSS”, “DNBS”, “Insertion Sort within the Merge Sort” and etc. are the

optimised sorting algorithm which are the optimization of Fundamental Selection Sort, Bubble Sort, Merge Sort

and etc. The introduction of Dual Nature Selection Sort and Dual Nature Bubble Sort version of selection sort

algorithm and Bubble Sort for sorting the data stored in database instead of existing selection sort algorithm

and Bubble Sort algorithm will provide an opportunity to the users to save almost 50% of their operation time

with almost 100% accuracy. In “Insertion Sort within the Merge Sort algorithm” there is found out the value of

maximum value of n (n is number of items to be sorted) so that the insertion sort beats the merge sort. Hence

the “ISwMS” is optimization of Fundamental Merge Sort algorithm.

Keywords: Dual Nature Selection Sort; Dual Nature Bubble Sort; Insertion Sort within the Merge Sort

Algorithm; Optimized Binary Search with Quick Sort.

1.0 Introduction

One of the basic problems of computer

science is sorting a list of items and searching

elements in the array. There are a number of solutions

to this problem, known as sorting algorithms, and

searching.. Some searching algorithms are simple and

spontaneous, such as the Linear Search, Binary

Search. All searching and sorting algorithms are

problem specific meaning they work well on some

specific problem and do not work well for all the

problems, therefore, appropriate for specific kinds of

problems.

There are several elementary and advance

sorting algorithms. All sorting algorithm are problem

specific meaning they work well on some specific

problem and some are suitable for floating point

numbers, some are good for specific range, some

sorting algorithms are used for huge number of data,

and some are used if the list has repeated values. We

sort data either in statistical order or lexicographical,

sorting numerical value either in increasing order or

decreasing order and alphabetical value like

addressee key.

Everything in this world has some advantage

and disadvantage, sorting is a data structure

operation, which is used for making easy searching

and arranging of element or record.

There are many fundamental and advance

sorting algorithms. Sorting algorithm help searching

data quickly and in this way it saves time. Arranging

the record or element in

30 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014

some mathematical or logical order is known as

sorting. Mainly sorting may be either numerical or in

alphabetical. In numerical sorting we will sort

numeric value either in increasing order or decreasing

order and in alphabetical sort we will sort the

alphabetical value e.g. Name key. I grew up with the

bubble sort in common; I am sure with many

colleagues having learnt one sorting algorithm, there

seemed little point in learning than any others. It was

hardly an exciting area of study. The efficiency with

which sorting is carried out will often have a

significant impact on the overall efficiency of a

program. Consequently there has been much research

and it is interesting to see the range of alternative

algorithms that have been developed. It is not always

possible to say that one algorithm is better than

another, as relative performance can vary depending

on the type of data being sorted. In some situations,

most of the data are in the correct order, with only a

few items needing to be sorted; In other situations the

data are completely mixed up in a random order and

in others the data will tend to be in reverse order.

Different algorithms will perform differently

according to\ the data being sorted. Four common

algorithms are the exchange or bubble sort, the

selection sort, the insertion sort and the quick sort.

The selection sort is a good. It is intuitive and very

simple to program. It offers quite good performance,

its particular strength being the small number of

exchanges needed. For a given number of data items,

the selection sort always goes through a set number

of comparisons.

1.1 Algorithm

In mathematics and computer science, an

algorithm is a step-by-step procedure for calculations.

Algorithms are used for calculation, data processing,

and automated reasoning.

An algorithm is an effective method

expressed as a finite list of well-defined instructions

for calculating a function. Starting from an initial

state and initial input (perhaps empty), the

instructions describe a computation that, when

executed, proceeds through a finite number of well-

defined successive states, eventually producing

"output" and terminating at a final ending state. The

transition from one state to the next is not necessarily

deterministic; some algorithms, known as randomized

algorithms, incorporate random input. In computer

systems, an algorithm is basically an instance of logic

written in software by software developers to be

effective for the intended "target" computer(s) for the

target machines to produce output from given input

(perhaps null)

Algorithm is the process in which there is

taken problem or set of problems as input and

produce solution or set of solutions as outputs.

Fig 1: Algorithm

1.2 Complexity analysis of algorithms

In computer science, the analysis of

algorithms is the determination of the amount of

resources (such as time and storage) necessary to

execute them. Most algorithms are designed to work

with inputs of arbitrary length.

Usually, the efficiency or running time of an

algorithm is stated as a function relating the input

length to the number of steps (time complexity) or

storage locations (space complexity).

Algorithm analysis is an important part of a

broader computational complexity theory, which

provides theoretical estimates for the resources

needed by any algorithm which solves a given

computational problem. These estimates provide an

insight into reasonable directions of search for

efficient algorithms.

1.3 Efficiency of an algorithm can be measured in

terms of/type of complexity

a. Execution time (Time Complexity).

b. The amount of memory required (Space

Complexity).

Advanced Optimization of Fundamental Searching and Sorting Algorithms 31

1.3.1 Time complexity

In computer science, the time complexity of

an algorithm quantifies the amount of time taken by

an algorithm to run as a function of the length of the

string representing the input. The time complexity of

an algorithm is commonly expressed using big O

notation, which excludes coefficients and lower order

terms.

1.3.1.1 Space complexity

Space Complexity of an algorithm is total

space taken by the algorithm with respect to the input

size. Space complexity includes both Auxiliary space

and space used by input

1.4 Asymptotic notation for complexity analysis of

algorithm

In computational complexity theory,

asymptotic computational complexity is the usage of

the asymptotic analysis for the estimation of

computational complexity of algorithms and

computational problems, commonly associated with

the usage of the big O notation.

There are used five asymptotic notations

1.4.1 Big o notation

Fig 2: Big O Notation

A function f(n) is of O(f(n)) iff there exist

positive constants c and n0 such that

|f(n)| <= c*|g(n)| for all n>= n0.

f(n) = O(g(n))

This is the upper case of complexity analysis

and this is known as worst case complexity of the

algorithm.

For example worst case complexity of the

Quick Sort algorithm is

T(n) = O(n2)

1.4.2 Big Ω notation

Fig 3: Big Omega Notation

A function f(n) is of Ω(g(n)) iff there exist

positive constants k and n0 such that |

f(n)| >=c*|g(n)| for all n >=n0.

f(n) = Ω(g(n))

This is used for Best Case Complexity of the

algorithms. Hence this is the important notation for

the analysis of the algorithms,

For example the Best case complexity of the

Quick Sort algorithm is

T(n) = f(nlgn)

1.4.3 Theta Θ notation

A function f(n) is of Θ(f(n)) iff it is of

O(f(n)) and it is of Ω(f(n)).

Fig 4: Theta Notation

32 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014

C1*g(n) < = f(n) < = C2*g(n)

F(n) = Θ(g(n))

Some of the hierarchy of complexities is as

follows

O(1) < O(log n) < O(n) < O(n log n) <

O(n2) < O(n3) < O(2n) < O(n!)

This is used for the analysis of average case

complexity of the algorithm.

1.4.4 Small oh (o) notation

This is another notation of complexity

analysis and it is similar to big O, but difference is

that there is not a equality condition. This also known

as the asymptotic tight bound.

f(n) = o(g(n)) iff f(n) < C(g(n)) for n0 > n

1.4.5 Small omega (Ѡ) notation

Small omega notation (ɷ) is similar of big

omega notation but there is a difference that there

exist inequalities between the relations.

f(n) = Ѡ(g(n)) iff f(n) > C(g(n)) for n0 > n

2.0 Optimization of Fundamental Algorithms

2.1 Dual nature selection sort

As the selection sort has three main

characteristic, the first that it is In-place algorithm

and second it is a stable algorithm, and third it is

simple while all other algorithm of order O(n2) do

not have all these characteristics. So it is felt that why

its time complexity should not improve. In this

scenario, the author capture the idea from old

selection sort that if we sort two data elements

(smallest as well as largest) of the given data in single

iteration, then its time can be reduced.

Therefore our DNSSA sorts the data from

front and rear ends of the array and finishes the

execution of outer loop when it reaches at the middle

of the array. In its first iteration it finds the smallest

and largest data elements of array and place those in

their desired locations, then it finds the next smallest

and largest data elements from the remaining array

and sorts those in their next respective locations in

the array.

In this way it executes half the iteration of

the outer loop, while old SS only finds either smallest

or largest (but not both) element of array and

requires the full iteration of outer loop. Although

DNSSA is still O(n2), but In this way its performance

level has very much improved as compared to other

sorting algorithm of said order i.e Bubble sort,

insertion sort etc.

Although DNSSA is still O(n2), but In this

way its performance level has very much improved as

compared to other sorting algorithm of said order i.e

Bubble sort, insertion sort etc.

2.2 Fundamental selection sort algorithm

This is a very easy sorting algorithm to

understand and is very useful when dealing with

small amounts of data. However, as with Bubble

sorting, a lot of data really slows it down. Selection

sort does have one advantage over other sort

techniques. Although it does many comparisons, it

does the least amount of data moving. Thus, if your

data has small keys but large data area, then selection

sorting may be the quickest.

The selection sort works by selecting the

smallest unsorted item remaining in the list, and then

swapping it with the item in the next position to be

filled.

The selection sort has a complexity of O(n2)

. The Selection sort is the unwanted stepchild of the

n2 sorts. It yields a better performance improvement

over the bubble sort, but the insertion sort is over

twice as fast as the bubble sort and is just as easy to

implement as the selection sort. In short, there isn't

really any reason to use the selection sort - use the

insertion sort instead.

If you really want to use the selection sort

for some reason, try to avoid sorting lists of more

than a 1000 items with it or repetitively sorting lists

of more than a couple hundred items.

2.2.1 Algorithm

FSSA (A, n)

1. fori ← n – 1 to 0

1.1. IndexOfLarge ← 0

1.2. for j←1 to i

1.2.1 if (A[j]>A[IndexOfLarge])

1.2.1.1 indexOfLarge ← j

1.3. Large ←A[IndexOfLarge]

1.4. A[IndexOfLarge] ← A[i]

1.5 A[i] ← Large

Advanced Optimization of Fundamental Searching and Sorting Algorithms 33

Table 1: Complexity Analysis of Selection Sort

Complexity

In order to evaluate the execution time

complexity of the given data of n elements. First we

simplify the execution time of some inner loop

statements in above algorithm.

Best-Case Time Complexity of FSSA

Thus here in best-case, the complexity of

execution time of an algorithm shows the lower

bound and is asymptotically denoted with Ω.

Therefore by ignoring the constant a, b, c and the

lower terms of n, and taking only the dominant term

i.e. n2, then the asymptotic running time of selection

sort will be Ω(n2) and will lie in of set of asymptotic

function i.e. Ө(n2). Hence we can say that the

asymptotic running time of SS will be:

T(n) = Ө(n
2
)

Worst -Case Time Complexity of FSSA

Now for the worst-case scenario we have

that all tij = 1 so we have

Thus here in worst-case, the complexity of

execution time of an algorithm shows the upper

bound and is asymptotically denoted with Big-O.

Therefore by ignoring the constant a, b,c and the

lower terms of n, and taking only the dominant term

i.e. n2 , then the asymptotic running time of selection

sort will be of the order of O(n2) and will lie in of set

of asymptotic function i.e Ө(n2). Hence we can say

that the asymptotic running time of old SS will be:

T(n) = Ө(n2)

34 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014

It means that the best and worst case

asymptotic running time of selection sort is same in

the term of order of asymptotic notation i.e.

T(n)=Ө(n2), however there may be little

difference in actual running time, which will be very

less and hence ignored

2.2.2 Dual nature selection sort algorithm

DNSSA (A,n)

Here we evaluate the Total Execution Time

of FSSA for the given data of n elements. Firstly we

simplify the execution time of some statements in

terms of dependent variable n.

Table 2: Complexity of DNSSA

Advanced Optimization of Fundamental Searching and Sorting Algorithms 35

More over the instructions enclosed in

dashed and dotted box of Pseudo code of DNSSA

will rarely be executed, i.e chance of their execution

is less, mostly the Else section of each If statement

will execute. So we are considering the total

execution of If statement in case of either true or false

logical condition.

Best Case Time Complexity

Then for the best-case scenario we have that

all tij = 0 so we have

Thus here in best-case, the complexity of

execution time of an algorithm shows the lower

bound and is asymptotically denoted with Ω.

Therefore by ignoring the constant a, b, c and the

lower terms of n, and taking only the dominant term

i.e. n2, then the asymptotic running time of selection

sort will be Ω(n2) and will lie in of set of asymptotic

function i.e. Ө(n2). Hence we can say that the

asymptotic running time of Optimized Selection Sort

Algorithm (DNSSA) will be:

T (n) = Ө (n2)

Worst Case Time Complexity

Then for the best-case scenario we have that

all tij = 1 so we get

Thus here in worst-case, the complexity of

execution time of an algorithm shows the upper

bound and is asymptotically denoted with Big-O.

Therefore by ignoring the constant a, b, c and the

lower terms of n, and taking only the dominant term

i.e. n2, then the asymptotic running time of selection

sort will be of the order of O(n2) and will lie in of set

of asymptotic function i.e Ө(n2). Hence we can say

that the asymptotic running time of Optimized

Selection Sort Algorithm (OSSA) will be:

T(n) = C4/8+C5 /8+C6 /8+C7 /8+C8 /8).)n2

Assume that

Thus here in worst-case, the complexity of

execution time of an algorithm shows the upper

bound and is asymptotically denoted with Big-O.

Therefore by ignoring the constant a, b,c and the

lower terms of n, and taking only the dominant term

i.e. n2 , then the asymptotic running time of selection

sort will be of the order of O(n2) and will lie in of set

of asymptotic function i.e Ө(n2). Hence we can say

that the asymptotic running time of old SS will be:

T(n) = Ө(n2)

It means that the best and worst case

asymptotic running time of selection sort is same

i.eT(n)=Ө(n2), however there may be little difference

in actual running time, which will be very less and

hence ignored.

36 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014

Comparison of Complexity of Fundamental

Selection Sort and DNSSA

From equation.2.2.1.a and (A)

Complexity of FSS

T(n)= 3C/2(n2)

And Complexity of DNSSA (from equation

2.2.2.b)

T(n) =5C/8(n2)

Hence DNSS algorithm same almost half

time in comparison of FSS that is DNSS algorithm is

better than the FSS algorithm, And it is the

optimization of Selection Sort.

For better understand the improvement

in complexity of DNSSA in comparison of

Selection Sort Algorithm-

Suppose that-

Below is the table representing the calculated time,

when multiple values of n are used.

Fig 4: Line Graph Plotted in Response of Data

From above graph, one can easily observe

that with the increase in number of data elements, the

DNSSA takes less time as compared to the Old SS

and it will be true for any number of data.

Advantage:

1. Simple and easy to implement.

2. It is faster than the FSSA.

Disadvantage:

Inefficient for large lists, so similar to the

more efficient insertion sort, the insertion sort should

be used in its place.

Advanced Optimization of Fundamental Searching and Sorting Algorithms 37

2.3 Dual nature bubble sort algorithm

The bubble sort is the oldest and simplest

sort in use. Unfortunately, it's also the slowest. The

bubble sort works by comparing each item in the list

with the item next to it, and swapping them if

required. The algorithm repeats this process until it

makes a pass all the way through the list without

swapping any items (in other words, all items are in

the correct order). This causes larger values to

"bubble" to the end of the list while smaller values

"sink" towards the beginning of the list. The bubble

sort is generally considered to be the most inefficient

sorting algorithm in common usage.

Dual Nature Bubble Sort is optimised

Sorting algorithm of Fundamental Bubble Sort

Algorithm, DNBSA. In DNBS algorithm the array is

sorted from both side left side

Dual Nature Selection Sort

2.3.1 Bubble sort algorithm

The bubble sort is the oldest and simplest

sort in use. Unfortunately, it's also the slowest. The

bubble sort works by comparing each item in the list

with the item next to it, and swapping them if

required. The algorithm repeats this process until it

makes a pass all the way through the list without

swapping any items (in other words, all items are in

the correct order). This causes larger values to

"bubble" to the end of the list while smaller values

"sink" towards the beginning of the list. The bubble

sort is generally considered to be the most inefficient

sorting algorithm in common usage. Under best-case

conditions (the list is already sorted), the bubble sort

can approach a constant O(n) level of complexity. In

general case its complexity is O(n2)

Algorithm

Bubble Sort (A, n)

1. Fori 1 to n

2. For j n to i+1

3. If A[j] <A[j-1]

4. Exchange(A[j],A[j-1])

Complexity Analysis of Bubble Sort Algorithm

38 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014

The complexity of DNBS is lower than the

Bubble Sort, and it save the one by fourth of Bubble

Sort algorithm. Hence DNBS has the better efficiency

than the Bubble Sort.

For better understand the improvement

in complexity of DNBSA in comparison of Bubble

Sort Algorithm-

Suppose that-

Below is the table representing the calculated time,

when multiple values of n are used.

Below is the line graph plotted in response of data

given in above table.

Fig: 5. Efficiency of DNBS

From above graph, one can easily observe

that with the increase in number of data elements, the

DNSA takes less time as compared to the BS and it

will be true for any number of data.

Advantage:

1. Simplicity and ease of implementation.

2 It has better efficiency than Bubble Sort

2.4 Insertion sort within the merge sort

The merge sort splits the list to be sorted

into two equal halves, and places them in separate

arrays. Each array is recursively sorted, and then

merged back together to form the final sorted list.

Like most recursive sorts, the merge sort has an

algorithmic complexity of O(n log n).Elementary

implementations of the merge sort make use of three

arrays - one for each half of the data set and one to

store the sorted list in. There are 14 non-recursive

versions of the merge sort, but they don't yield any

significant performance enhancement over the

recursive algorithm on most machine

The insertion sort works just like its name

suggests - it inserts each item into its proper place in

the final list. The simplest implementation of this

requires two list structures – the source list and the

list into which sorted items are inserted. To save

memory, most implementations use an in-place sort

that works by moving the current item past the

already sorted items and repeatedly swapping it with

the preceding item until it is in place. Like the bubble

sort the insertion sort has a complexity of O(n2).

Although it has the same complexity, the insertion

sort is a little over twice as efficient as the bubble

sort.

Insertion sort is probably the first sorting

algorithm that is taught in programming classes. It is

far from efficient in terms of the number of

comparisons, but is very compact in terms of code

space required. As such, the insertion sort algorithm

may be useful for sorting small lists.

Algorithm

ISwMS (A, p, r)

Advanced Optimization of Fundamental Searching and Sorting Algorithms 39

Comparison of Insertion Sort and Merge Sort

From the above equation of Complexity of

Insertion Sort and Merge Sort

Complexity of Merge Sort- T(n) = 8C(nlgn)

Complexity of Insertion Sort- T(n) =

3C/2(n2)

Complexity of Merge Sort >= Complexity of

Insertion Sort

8C(nlgn) >= 3C/2(n2)

16lg n>= 3n

Hence n<=24. That is for n less than and or

equal to 24 the Insertion Sort algorithm beats the

Merge Sort algorithm. Hence the Mer Sort can be

optimised by using the Insertion Sort for less than or

equal to the specific range of number of elements.

2.5 Optimised binary search with quick Sort

Optimised binary search with quick sort

algorithm is the new searching algorithm which is

used to search the desired element in unsorted array

with the concept of quick sort and binary search. So

this is the optimised algorithm for searching the

element.

One of the most frequent operations

performed on database is searching. To perform this

operation we have different kinds of searching

algorithms, some of which are Binary Search, Index

Sequential Access Method (ISAM), but these and all

other searching algorithms work only on data, which

are previously sorted. An efficient algorithm is

required in order to make the searching algorithm fast

and efficient. This research paper presents a new

sorting algorithm named as “Optimized Binary

Search With Quick Sort Algorithm, “OBSQS”.

Optimised Binary Search with Quick Sort is designed

to perform searching quickly and more effectively as

compared to the existing version of searching

algorithm. The introduction of OBSQS version of

searching algorithm for searching the data stored in

data base.

The complexity of this algorithm is better

than the complexity of existing search algorithms. In

Optimised Binary Search with Quick Sort the desired

element is searched without sorting the array and this

algorithm use the both concepts of binary search and

quick sort, quick sort is used to partition the array

into two parts and part which have the value is taken

and further proceed to completion the searching of

the element. Hence Optimised Binary Searching

Algorithm is the combination of both Binary Search

Algorithm as well as the Quick Sort Algorithm.

Dividation of the array into two part is done by

quickpoint value which is find out with quick sort

quickpoint function, and then taken a part by the

binary search algorithm’s concept.

In this searching algorithm”Optimised

Binary Search with Quick Sort” the concept is used

both binary search and quick sort algorithm. In

Optimised Binary Search with Quick Sort the desired

element is searched without sorting the array, and this

algorithm use the both concepts of binary search and

quick sort, quick sort is used to partition the array

into two parts and part wich have the value is taken

and further proceed to completion the searching of

the element. Hence Optimised Binary Searching

Algorithm is the combination of both Binary Search

Algorithm as well as the Quick Sort Algorithm.

Dividation of the array. The complexity is better than

other searching algorithm, and the main advantages

of this algorithm are that it is used for unsorted array.

In this algorithm the array is divided into almost

equally two part after the Checking of quickpoint

value and after that our is divided into almost half of

the of starting array and so on until the element is not

fount or the array is searched completely.

Algorithm

Optimised binary search with quick sort

algorithm is the searching algorithm which is used to

search the desired element in unsorted array with the

concept of quick sort and binary search. So this is the

optimised algorithm for searching the element. To

40 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014

perform this operation we have different kinds of

searching algorithms, some of which are Binary

Search, Index Sequential Access Method (ISAM), but

these and all other searching algorithms work only on

data, which are previously sorted. An efficient

algorithm is required in order to make the searching

algorithm fast and efficient of OBSQS version of

searching algorithm for searching the data stored in

data base.

This algorithm is perform the Divide and

conquer approach as in the quick sort is used but the

major difference is that it takes only one pat after

checking the desired item with quickpoint value and

hence the complexity is better than quick sort and

existing searching algorithm-

Divide- Divide the array almost into two part and

take the part which has the desired element.

Conquer- Perform dividing and checking with item

till the desired value found or the array is completely

searched. Combine- Nothing.

Hence the optimised Search with quick sort

algorithm is the optimised searching algorithm which

is optimised with use of concept of binary search and

quick sort algorithm. Hence Optimised Binary

Searching Algorithm is the combination of both

Binary Search Algorithm as well as the Quick Sort

Algorithm. Dividation of the array. The complexity is

better than other searching algorithm, and the main

advantages of this algorithm is that it is used for

unsorted array. In this algorithm the array is divided

into almost equally two part after the Checking of

quickpoint value and after that our is divided into

almost half of the of starting array and so on until the

element is not fount or the array is searched

completely. So that the complexity of searching

algorithm become better and efficient good and so

that the efficiency become better that given

algorithm.

Many engineering issues come to the fore

when implementing sorting algorithms. The fastest

sorting program for a particular situation may depend

on many factors, such as prior knowledge about the

keys and satellite data, the memory hierarchy (caches

and virtual memory) of the host computer, and the

software environment.

Many of these issues are best dealt with at

the algorithmic level, rather than by tweaking the

code.

OBSWQS Search (A, p, r)

Performance of Optimised Binary Search with

Quick Sort

The running time of optimised binary search

with quick sort depends on whether the partitioning is

balanced or unbalanced, which in turn depends on

which elements are used for partitioning. If the

partitioning is balanced, the algorithm runs

asymptotically as fast as merge. Complexity of this is

become better than binary search in the sense it use

unsorted array instead of sorted array and it is better

than linear search in the sense of the complexity, it is

more efficient than linear search algorithm.

1. By the Master Theorem.

T(n) =T(n/2)+O(1).

Best Case Complexity.

T(n)=Ω(1).

Average Case Complexity

T(n)=Θ(lgn)

Worst Case Complexity.

T(n)=O(n)

Hence the complexity of this searching

algorithm can be expressed in all three asymptotic

notation of the complexity analysis.

Complexity Analysis

Advanced Optimization of Fundamental Searching and Sorting Algorithms 41

Fig 6: QSwMS Tree

Complexity= Complexity of Checking+

Complexity of Breacking

=O(n)+O(n/2)+O(n/4)+….til 2i

Now calculate i.

2i =n. i=lgn.

That is Comlexity in order form and

eliminating the minimum term.

T(n)=O(n-2)

Advantages

1. It is fast and efficient.

2. It has better complexity than other searching

algorithms.

3. It is used for the unsorted array.

Disadvantages

1. There is used the partition concept of the quick

sort and hence it increases the complexity of

the algorithm.

It has the more complexity than binary

search algorithm in the sense of using the quick sort’s

partition concept.

References

[1] Y. Han, Deterministic sorting in O(nlog log

n) time and linear space, Proceedings ofthe

thirty-fourth annual ACM symposium on

Theory of computing, Montreal, Quebec

Canada, 2002, 602-608

[2] M. Thorup, Randomized Sorting in O (n log

log n) Time and Linear Space

UsingAddition, Shift, and Bit-wise Boolean

Operations, Journal of Algorithms, 42(2),

2002, 205-230

[3] Y. Han, M. Thorup, Integer Sorting in O(n

(log log n) Time and Linear Space,

Proceedings of the 43rd Symposium on

Foundations of Computer Science, 2002,

135-144

[4] P. M. McIlroy, K. Bostic, M. D. McIlroy,

Engineering radix sort, Computing Systems,

2004, 224-230

[5] M. D. McIlroy, A killer adversary for quick

sort, Software--Practice

andExperience,1999, 123-145

[6] I. Flores, Analysis of Internal Computer

Sorting, J.ACM 7, 4, 1960, 389- 409

[7] G. Franceschini, V. Geffert, An In-Place

Sorting with O (n log n) Comparisons and O

(n) Moves, In Proc. 44th Annual IEEE

Symposium on Foundations of Computer

Science, 242-250, 2003

[8] D. Knuth, The Art of Computer

programming Sorting and Searching, 2nd

edition, 3, Addison- Wesley, 1998

[9] C. A. R. Hoare, Algorithm 64: Quick sort,

Comm. ACM 4, 7, 1961, 321

[10] Soubhik Chakraborty, Mausumi Bose, and

Kumar Sushant, A Research thesis, On Why

Parameters of Input Distributions need be

taken into Account for a More Precise

Evaluation of Complexity for Certain

Algorithms

 [11] D.S. Malik, C++ Programming: Program

Design Including Data Structures, Course

Technology (Thomson Learning), 2002,

www.course.com

[12] D. Jim´enez-Gonz´alez, J. Navarro, and J.

Larriba-Pey. CC-Radix: A Cache Conscious

Sorting Based on Radix Sort, In Euromicro

42 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014

Conference on Parallel Distributed and

Network based Processing, 101-108, 2003

 [13] J. L. Bentley, R. Sedgewick, Fast

Algorithms for Sorting and Searching

Strings", ACM-SIAM SODA, 97, 360-369,

1997

[14] I. Flores, Analysis of Internal Computer

Sorting, J.ACM 8, 1961, 41-80

[15] J. W. J. Williams, Algorithm 232: Heap

sort". Comm. ACM 7, 6, 1964, 347-348

[16] A. Andersson, S. Nilsson, 1994, A New

Efficient Radix Sort". In the Proceeding of

the 35 Annual IEEE Symposium on

Foundation of Computer Science, 1994,

714-721

[17] I. J. DAVIS, A Fast Radix Sort, The

computer journal 35, 6, 636-642, 1992

[18] V. Estivill-Castro, D. Wood, A Survey of

Adaptive Sorting Algorithms, Computing

Surveys, 24:441-476, 1992

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest,

C. Stein, Introduction to Algorithms, MIT

Press, Cambridge, MA, 2, 2001

