
International Journal of Advance Research and Innovation

Vol. 2(2), Apr-Jun 2014, pp. 52-60

Doi: 10.51976/ijari.221408

www.gla.ac.in/journals/ijari

© 2014 IJARI, GLA University

Article Info

Received: 05 Mar 2014 | Revised Submission: 20 Apr 2014 | Accepted: 28 May 2014 | Available Online: 15 Jun 2014

*Department of Computer Science & Engineering, Teerthanker Mahaveer University, Moradabad, India

(E-mail: sakshisingh0009@gmail.com)

Algorithm and Techniques for Overlapping Community Detection

Sakshi Singh*

ABSTRACT

A lot of phenomenon, real world and otherwise can be conveniently represented as graphs, with the nodes

corresponding to the entities and the edges representing the interaction be- tween those entities. Communities

or modules, which are groups of nodes densely connected to each other within the community but sparsely

linked to other communities and the rest of the graph, often having similar structural and functional properties.

A lot of algorithms have been proposed to partition the set of vertices into communities; such a partition

exclusively puts a node into one community or the other. But in real life a node can belong to multiple

communities simultaneously, i.e. the communities can overlap. Different metrics have been proposed. We reduce

the modularity maximization problem for splitting the graph into two communities to the MAX-CUT problem

with both positive and negative weights. We introduce and analyze three approximation algorithms to maximize

modularity for the two community case; recursive bi-partitioning can be carried out as long as modularity

increases to split into more than two communities.

Keywords: Modularity MAX-CUT Chromosome.

1.0 Introduction

Many real world phenomenon can be

represented as graphs, directed or undirected, where

the nodes represent the entities and the edges

represent the interaction between those entities.

Given an undirected unweighted graph G = (V, E), a

community is an induced subgraph on a subset C of

vertices satisfying some properties.

A rough guideline of a community is by

Newman and Girvan [20]: “a community is a

subgraph containing nodes which are more densely

linked to each other than to the rest of the graph or,

equivalently a graph has a community structure if the

number of links into any subgraph is higher than the

number of links between those subgraphs”.But only

rarely do real world graphs separate into non

overlapping communities or „hard- partitions‟, most

real networks have well defined overlapping and

nested communities. There will be a set of nodes that

can be put in more than one community, where a

certain strict classification into one community or

another is inaccurate, if not totally wrong. We reduce

the modularity optimization for the two community

„hard-partition‟ case to the MAX- CUT problem with

both negative and positive weights. Further we

propose and analyze three approximation algorithms

for modularity maximization for the two community

„hard-partition‟ case.We extend the Modularity

metricso as to allow overlapping communities,we

further discuss several properties of the

extension.Reduces the extended modularity

maximization problem into a Genetic Optimization

problem, the algorithm is presented to maximize

modularity. the results of application of our algorithm

on real world graphs and computer generated overlap

models and are presented and analyzed.

1.1 Modularity:a goodness measure

It is a measure of how good a particular

division of a graph G into a set of communities C is

larger values of Modularity indicate a better partition,

or a more modular graph.

1.2 Conductance

For a Graph, G = (V, E) and a partition of

the vertex set V into non-empty subsets S, S‟

Conductance of the cut (S, S‟) is defined as follows:

53 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014

 Here vol(S) = vol(S, V)

 and cut(s, s‟)

2.0 Approximation Algorithm for Modularity

Maximization

We formulate the problem of partitioning the

graph into two communities so as to maximize

modularity as a Strict Quadratic Program, we then

relax it into a Vector Program which can be solved

upto any degree of accuracy, and we finally round the

solution to get back to the solution of the original

problem. We use the rounding techniques based on

Rietz‟ method of averaging with the Gaussian

measure to get a randomized approximation

algorithm with an approximation guarantee ≈

0.27.We reduce the modularity maximization

problem into the MAX-CUT problem and then use

the techniques described in Alon et.al [49] to im

prove the approximation guarantee to

2.1 Modularity maximization as a strict quadratic

program

In this section we briefly describe the

formulation of modularity maximization as a Strict

Quadratic Program and it‟s subsequent relaxation as

a Vector Program and the rounding scheme used.

Then we analyze the approximation guarantee given

by this formulation. For a quick overview of

Quadratic Programming and Vector Programming

2.2 Programming formulation

For every vertex u we have a variable yu

{−1, +1}. The value of yu depends upon which

community it is in, if u lies in C1 then yu = 1 else yu

= −1. Modularity, the objective function can be

written as follows

Therefore the optimization problem can be

written as follows:

Subject to: y2 = 1, ∀ u ∈ V The condition y2

= 1 simply states that yu ∈ {+1, −1}, ∀ u ∈ V. The

Quadratic Program (3.4) is an example of a Strict

Quadratic Program, here both the objective function

and the conditions are quadratic in the input

variables. Such problems are often solved by relaxing

the QP into the corresponding Vector Programming

problem and then rounding the solution of the VP to

get the required solution.

2.3 Vector programming relaxation

To turn a Strict QP into a VP, one replaces

each variable yu by an n dimensional vector yu and

each product yuyv by the inner product between those

vectors, yu • yv. The modularity optimization

problem then becomes as follows:

Subject to: y2 = 1, ∀ u ∈ V

The Vector Program (3.5) is a relaxation of

the Strict Quadratic Program (3.4) because any

feasible solution to (3.4) yields a solution to (3.5)

having the same objective value by assigning the

vector (yu, 0, 0...0) to yu. Vector programs are

solvable in polynomial time upto any degree of

accuracy by the Ellipsoid Algorithm.

2.4 Rounding the solution

Now all that remains is to get from the

vector yu to the scalar yu. This process of getting to

the solution of the original problem from the solution

of the relaxation is called rounding. We could start by

using the randomized rounding process of Goemans

and Williamson [50] for the MAX-CUT problem. In

this we choose a random vector r on the surface of the

unit (n − 1) dimensional sphere, and assign yu =

sign(yu • r) ∀ u ∈ V . The problem is that unlike in

the MAX-CUT case where the weights are all taken

to be all non-negative, we can‟t assume the same

things about our cuv s, as even if each term cuv yu •

yv maybe rounded well by cuv yuyv the sum may not

be, because there maybe cancellations.We use Rietz‟

method to round the solution yu ∈ Rn by averaging

Algorithm and Techniques for Overlapping Community Detection 54

over Rn with the normalized Gaussian method. Let

g1, g2 ...gn ∼ N (0, 1) be standard independent

Gaussian random variables, define g=

we see that g • g = 1, i.e. it lies on the unit

hypersphere and is selected to belong randomly

anywhere on the surface of the hypersphere.We then

simply take the inner product between the vectors yu

and g and assign yu = sign(yu.g)

2.5 Reducing modularity maximization for two

communities to the max-cut problem

We reduce the two community modularity

maximization problem to the MAX-CUT problem

with both positive and negative weights. The MAX-

CUT problem is NP-Hard and for the case when all

the weights are positive the best known algorithm is

the 0.878 approximation algorithm by Goemans and

Williamson [50]. Since we do have negative weights

the GW algorithm‟s analysis doesn‟t carry over.

We note that Alon et.al. have reduced the

MAX-CUT problem to a quantity called the cut-norm

of a real matrix A, ||A||C . They give a randomized

 0.56. Algorithm for optimizing ||A||C, thereby

leading to an algorithm for Modularity Maximization

with the same approximation ratio.

In this section, we will describe the

reduction of the Modularity Maximization problem to

the MAX-CUT problem, then we briefly describe the

cut-norm and another related norm||A||∞→1, we then

describe the reduction of the MAX-CUT problem to

the cut-norm problem.In the next section we describe

the algorithm for obtaining an approximation

guarantee of 0.56.

2.6 Reduction to the MAX-CUT problem

In addition to the above notation, we have

the following

The RHS of the above equation is exactly

identical to the mathematical programming

formulation of the MAX-CUT problem on the graph

with same vertices as G and with weight on the edge

(i, j) as (−cij).

Which means that given a graph G = (V, E)

if we make another weighted graph G′ =

(V, E′) where wij = (−cij), i.e. the weight of

an edge between i and j is −cij then the above can be

55 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014

written as

=2MAXCUT (G‟)

Therefore the optimal value of modularity of

a bi-partition of G is twice the optimal value of the

max-cut of the graph G′ as constructed above. Hence

the reduction.

optimizing Q ≤P MAX-CUT

2.7 The cut-norm ||*||C and the ||*|| 1 norm

For a real matrix A = (aij)i∈R,j∈ S , the cut-

norm of A is the maximum, over all I ⊂ R, J ⊂ S of

the

quantity | Pi∈ I,j∈ J aij |. It is often

convenient to study the related norm,

Where the maximum is taken over all xi, yj

∈ {−1, +1}.We now show that for a matrix A, whose

sum of each row and the sum of each column is zero,

both the norms are related as

Suppose that ||A||C = Pi∈ I,j∈ J aij (similar

analysis for the negative case, − Pi∈ I,j∈ J aij).

Define xi = 1 for i ∈ I and xi = −1 for i ∈ / I.

Similarly, yj = 1 for j ∈ J and yj = −1 for j ∈ / J .

Then we can write,

2.8 Reduction of the MAX-CUT Problem to the

cut-norm

Let G = (V, E) be the given weighted graph

with W = (wij) as the weight matrix. Label the

vertices and edges arbitrarily V = {v1, v2 ...vn} and E

= {e1, e2 ...em}. We describe the construction of a

2m × n matrix M = (mij) with vanishing row and

column sums such that

M AXCU T (G) = ||M ||C and therefore by

(3.13) M AXCU T (G) = 1 ||M ||∞→1.

The construction of the matrix M is as

follows, for each edge ek = (vi, vj) 1 ≤ k ≤ m, if i < j

then assign m2k−1,i = m2k,j = wij and m2k,i =

m2k−1,j = −wij . The rest of the entries being zeroes.

It is easy to see that by the above construction the

row and the column sums are zero. It is also easy to

see that M AXCU T (G) = ||M ||C ⇒ M AXCU T (G)

= 1 ||M ||

∞→1. Asn2m

||M ||∞→1 = max Pi=1 Pj=1 mij xiyj , we

observe that in the maximum cut all the vertices on

one side of the cut (i.e in the same community) will

get the same value of y, and the vertices on the other

side of the cut will get the value −y, the values of x

adjust themselves accordingly so as to maximize ||M

||∞→1.

Optimizing Q ≤P MAX-CUT ≤P Cut-norm

In the next section we describe the algorithm

due to Alon et.al [49] to maximize the || ∗ ||∞→1

norm of a real valued matrix. Therefore the algorithm

from the next section to maximize the ||∗ ||∞→1 norm

along with the chain of reductions from modularity

maximization to the || ∗ ||∞→1 norm supplies us with

an algorithm for modularity maximization with the

same approximation guarantee.

3.0 Extended Modularity

We have extended the definition of

Newman‟s Modularity metric so as to allow

overlapping communities; here we present the

extension and its basic idea, the sharing function. We

also discuss some salient properties of this metric and

the sharing function.

3.1 Intuition

Since we want to allow overlaps in the

communities we create, we must then have a notion

of a vertex belonging to different communities at

once. Let G = (V, E) be the graph, and let C be the set

of communities and let pc denote the

Algorithm and Techniques for Overlapping Community Detection 56

probability/contribution/strength with which

the vertex i belongs to the community c ∈ C. So for

each node i we have a probability vector

 are the

communities.So basically the strength with

which a node I belongs to a particular communities c

is denoted by For the original modularity case this

Concentrating on the first term on the right

hand side aij δci, cj, we see that the δ function is the

one that leads to an edge contributing either 0 (when i

and j are in different communities) or 1 (when i and j

are in the same community) to a particular

community. So the contribution of an edge to a

particular community is weighed by the δ function.If

suppose instead we were to replace this δci, cj

function by some other suitable function f

3.2 The sharing function f

Ideally we would like the shoaring function

f: [0, 1] × [0, 1] → [0, 1] to have the following

properties f (0, x) = 0, ∀ x (3.3)

f (1, 1) = 1 (3.4) f(x, The function should

have a concave surface and actually be congenial to

sharing. Some functions that fit our bill:

There is yet another function, the two

dimensional logistic function, which is considered the

smooth version of the delta function, though strictly

speaking it does not follow the two properties

mentioned above, but it approximately follows them

i.e.

f (0, x) ≈ 0, ∀ x

f (1, 1) ≈ 1

The function being:

f (p1, p2;

Along both the axes its value is

approximately 0, and though not apparent in the value

at (1, 1) is 0.995. Since this function is also

decomposable, we can transform it to satisfy the

above properties exactly.

The best results we have got is by using the

function f (p1, p2;

With the parameter a = 1. From this point

onwards we will simply call this sharing function f.

3.3 Extended modularity

Our extension to modularity for overlapping

networks is as follows:

57 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014

4.0 Algorithm to Maximize Extended Modularity

We have two algorithms that try to

maximize modularity, one of them OSG (One Step

Greedy), roughly finds the overlapping configuration,

subsequent incremental improvement can be done on

this initial configuration. The other is basically a

formulation of overlapping modularity optimization

as a Genetic Optimization problem.

4.1 One step greedy algorithm: osg

4.1.1 Terminology

A node i is called a boundary node if it has

edges going into any community apart from it‟s own

community, and let the set Ci denote all those

communities to which the node i has links to,

therefore any node on the boundary will have |Ci| ≥ 2.

Sharing a node i between a set C of communities in

this case means pc = 1/|C| ∀ c ∈ C.

4.1.2 Idea

The idea is simple, using the original

definition of modularity, the one for the non-

overlapping case, we first hard-partition the graph

into communities. Then for each of the boundary

nodes we try to share it with the communities it is

bordering, we then select the node that gives the

largest increase in modularity and add it into that

community and iterate. We do this till there is no

more increase in the modularity.

4.1.3 Criticism

Basically the algorithm is a quick and dirty

guide to what all overlaps can be there; it is na¨ıve in

the sense that even if a node can belong

overwhelmingly to one or the other community even

while being shared, it will contribute equal weights to

both the communities in which it is shared. This is the

main drawback, but it does serve it‟s purpose, that of

showing approximately where the sharing is taking

place.

4.2 Genetic algorithm: GA

The Genetic Algorithms are adaptive search

heuristic based algorithms, these aims to simulate the

natural process of evolution and natural selection to

produce the „fittest‟ individuals. We transform the

modularity maximization problem as a Genetic

Optimization problem in which the number of

communities can be given as a parameter.

4.2.1 Introduction to GAs

Genetic Algorithms aim to mimic what

nature seems to be doing in real life to produce the

best and the fittest individuals, i.e. the axioms of

survival of the fittest, crossover and genetic mutation,

natural selection etc.

Basically any genetic algorithm will have

the following two things

1. A representation of the solution space.

2. A fitness function to evaluate a particular

solution.

A particular candidate solution is called an

individual, and the genetic material of each individual

is called the chromosome. These individuals are

evaluated on the basis of the fitness function; the

fitness function is the quantity that we are aiming to

optimize. The algorithm applies various search

heuristics to come up with an optimal solution.

Typically the heuristics are as follows:

1. Initialization: The individuals are initialized

randomly to form an initial population this can

range between a few hundred to a few

thousand individuals.

2. Selection: A chosen group of individuals is

used to breed the next generation of the

population. Usually it is the fittest individuals

of the previous generation who are selected to

breed and form the next generation. The

individuals who are not deemed to be fit are

neglected in this step.

3. Reproduction: Genetic Operators like

Crossover and Mutation are applied to make

up for the individuals that we discarded in the

above step.

(a) Crossover: Here basically two individuals

from the previous generation come to- gether

and via some operation form a new individual.

Some of the balance elements required to

complete the population are made in this way.

(b) From Scratch: The rest of the individuals to

complete the population are made brand new

from scratch.

Algorithm and Techniques for Overlapping Community Detection 58

(c) Mutation: Here we take an existing individual

and change it‟s chromosome. We do this so as

to improve our chances of finding the global

optimum.

4. Termination: Some criteria is kept, to

terminate the solution, like a fixed number of

iterations (epochs), or some other cost measure

is used.

4.2.2 Chromosome representation

As the name suggests, we make the rest of

the individuals from scratch. Normalization should

also be done.

4.2.4.5 Mutation

This depends on the exact problem at hand.

Given a graph G = (V, E) and the set of communities

C we are trying to get for each i ∈ V the set of

belonging probabilities pc ∀ c ∈ C. So our

chromosome looks like a |V | × |C| matrix I. Where Iij

= pj.

4.2.3 Fitness function

In our case it is nothing but the overlapping

modularity,

4.2.4 Algorithm

The algorithm takes the following three

parameters, nindiv, ncomms, and nepocs. Where

nindiv are the number of individuals that we initialize

randomly, ncomms is a parameter for the number of

communities, and nepochs is the number of iterations

which we allow the algorithm to run before we report

the solution.

4.2.4.1 Intialization

All the chromosomes of all the individuals

are initialized to random variables. We have to

normalize those to ensure that the probabilities for

each node sum upto 1 i.e.

4.2.4.2 Selection

All the individuals are now ordered on the

basis of the fitness of their chromosome; here we

have selected a fixed percentage of individuals to

carry forward to the next generation. The rest of the

individuals are made up partly by crossover from the

better individuals of the previous generation, while

the rest are made from scratch.

4.2.4.3 Crossover

4.2.4.4 From scratch

For a fixed percentage of individuals, we

select a node and a community at random and change

the belonging factor of that individual for that

particular node and community, keeping in mind to

keep normalizing.

4.2.4.6 Clean up

In addition to the above „mandatory‟ steps,

Nicosia et.al. implement a cleanup function, it

basically sees the following two parameters for a

randomly selected node, i and a randomly selected

community c of every individual,

If avgN eigh(i, c) ≥ avgN otN eigh(i, c) then

we increase pc by a small quantity p, that we call the

momentum.Else we decrease the same quantity by the

momentum, if pc < p then we set it to 0.We have

presented and analyzed the Original Modularity

Optimization problem as a Math- ematical

Programming problem; we have also reduced the

problem of partitioning a graph into two communities

59 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014

to maximize modularity to the MAX-CUT problem

and presented three approximation algorithms to

maximize modularity.

We see that the extended modularity based method

correctly groups the nodes into com- munities which

are either known apriori, or goes one step

better and discovers a hidden structure in the

network, also that the sharing is pretty intuitive with

the nodes which have an even degree distribution

between communities coming out as shared. The

extent of sharedness and allowed overlap can be

controlled by varying the parameter in the sharing

function.

Though Modularity inherently has some

problems regarding the resolution limit, we haven‟t

encountered it in our real-life examples that we have

tested upon.The extension to modularity is simple,

logical and straightforward, and we have given

general characteristics for the sharing function, so as

to keep the door open for further improvements in

that area. It also reduces to the original modularity

function in case of a hard-partition and follows its

salient features.

The Genetic Algorithm based approach

takes O(n2kei) time where n is the number of nodes, k

the number of communities to be found, e number of

epochs and i the number of individuals to be

generated. This is a heavy on space too, requiring nki

floating numbers to be stored. We would like to have

approximation algorithms based on Mathematical

Programming to optimize extended modularity, but

even drastic simplifications of our extended

modularity have resisted being formulated as

tractable mathematical programs.

5.0 Conclusion

We have presented and analyzed the

Original Modularity Optimization problem as a Math-

ematical Programming problem; we have also

reduced the problem of partitioning a graph into two

communities to maximize modularity to the MAX-

CUT problem and presented three approximation

algorithms to maximize modularity.We see that the

extended modularity based method correctly groups

the nodes into com- munities which are either known

apriori, or goes one step better and discovers a hidden

structure in the network, also that the sharing is pretty

intuitive with the nodes which have an even degree

distribution between communities coming out as

shared. The extent of sharedness and allowed overlap

can be controlled by varying the parameter in the

sharing function.Though Modularity inherently has

some problems regarding the resolution limit, we

haven‟t encountered it in our real-life examples that

we have tested upon.The extension to modularity is

simple, logical and straightforward, and we have

given general characteristics for the sharing function,

so as to keep the door open for further improvements

in that area. It also reduces to the original modularity

function in case of a hard-partition and follows its

salient features.

The Genetic Algorithm based approach

takes O(n2kei) time where n is the number of nodes,

k the number of communities to be found, e number

of epochs and i the number of individuals to be

generated. This is a heavy on space too, requiring nki

floating numbers to be stored. We would like to have

approximation algorithms based on Mathematical

Programming to optimize extended modularity, but

even drastic simplifications of our extended

modularity have resisted being formulated as

tractable mathematical programs.

References

[1] D. J. Watts, S. H. Strogatz, Collective

dynamics of small-world networks, Nature,

393(6684), 440-442, 1998

[2] M. Girvan, M. E. Newman, Community

structure in social and biological networks,

Proceedings of the National Academy of

Sciences of the United States of America,

99(12), 2002, 7821-7826

[3] Detecting community structure in networks,

M. E. J. Newman, Eur. Phys. J. B 38,321-

330, 2004

[4] Using Correspondence Analysis for Joint

Displays for Affiliation Networks. Models

and Methods in Social Network Analysis. K

Faust, Chapter 7 (Cambridge University

Press, New York, 2005).

[5] J. Scott, Social Network Analysis: A

Handbook. Sage, London, 2nd edition.

Algorithm and Techniques for Overlapping Community Detection 60

 [6] F. Radicchi, C. Castellano, F. Cecconi, V.

Loreto, D. Parisi, Defining and identifying

communities in networks. Proc. Natl. Acad.

Sci. USA 101, 2658-2663, 2004

[7] G. W. Flake, S. R. Lawrence, C. L. Giles, F.

M. Coetzee, Self-organization and

identification of Web communities. IEEE

Computer 35, 66-71, 2002

[8] L. Danon, J. Duch, A. Diaz-Guilera, A.

Arenas, 2005, J. Stat. Mech., P09008

[9] Jeong, H., Tombor, B., Albert, R., Oltvai, Z.

N.and Barabasi, A.-L. (2000)

Nature(London) 407, 651-654.

[10] D. A. Fell, A. Wagner, 2000, Nat.

Biotechnol. 18, 1121-1122

