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ABSTRACT 

 

A lot of phenomenon, real world and otherwise can be conveniently represented as graphs, with the nodes 

corresponding to the entities and the edges representing the interaction be- tween those entities. Communities 

or modules, which are groups of nodes densely connected to each other within the community but sparsely 

linked to other communities and the rest of the graph, often having similar structural and functional properties. 

A lot of algorithms have been proposed to partition the set of vertices into communities; such a partition 

exclusively puts a node into one community or the other. But in real life a node can belong to multiple 

communities simultaneously, i.e. the communities can overlap. Different metrics have been proposed. We reduce 

the modularity maximization problem for splitting the graph into two communities to the MAX-CUT problem 

with both positive and negative weights. We introduce and analyze three approximation algorithms to maximize 

modularity for the two community case; recursive bi-partitioning can be carried out as long as modularity 

increases to split into more than two communities. 

 

Keywords: Modularity MAX-CUT Chromosome. 

 

1.0 Introduction 

 

Many real world phenomenon can be 

represented as graphs, directed or undirected, where 

the nodes represent the entities and the edges 

represent the interaction between those entities. 

Given an undirected unweighted graph G = (V, E), a 

community is an induced subgraph on a subset C of 

vertices satisfying some properties. 

A rough guideline of a community is by 

Newman and Girvan [20]: “a community is a 

subgraph containing nodes which are more densely 

linked to each other than to the rest of the graph or, 

equivalently a graph has a community structure if the 

number of links into any subgraph is higher than the 

number of links between those subgraphs”.But only 

rarely do real world graphs separate into non 

overlapping communities or „hard- partitions‟, most 

real networks have well defined overlapping and 

nested communities. There will be a set of nodes that 

can be put in more than one community, where a 

certain strict classification into one community or 

another is inaccurate, if not totally wrong. We reduce 

the modularity optimization for the two community 

„hard-partition‟ case to the MAX- CUT problem with 

both negative and positive weights. Further we 

propose and analyze three approximation algorithms 

for modularity maximization for the two community 

„hard-partition‟ case.We extend the Modularity 

metricso as to allow overlapping communities,we 

further discuss several properties of the 

extension.Reduces the extended modularity 

maximization problem into a Genetic Optimization 

problem, the algorithm is presented to maximize 

modularity. the results of application of our algorithm 

on real world graphs and computer generated overlap 

models and are presented and analyzed. 

 

1.1 Modularity:a goodness measure  

It is a measure of how good a particular 

division of a graph G into a set of communities C is 

larger values of Modularity indicate a better partition, 

or a more modular graph. 

 

1.2 Conductance  

For a Graph, G = (V, E) and a partition of 

the vertex set V into non-empty subsets S, S‟ 

Conductance of the cut (S, S‟) is defined as follows:  
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 Here vol(S) = vol(S, V) 

 and cut(s, s‟)  

 

2.0 Approximation Algorithm for Modularity 

Maximization  

 

We formulate the problem of partitioning the 

graph into two communities so as to maximize 

modularity as a Strict Quadratic Program, we then 

relax it into a Vector Program which can be solved 

upto any degree of accuracy, and we finally round the 

solution to get back to the solution of the original 

problem. We use the rounding techniques based on 

Rietz‟ method of averaging with the Gaussian 

measure to get a randomized approximation 

algorithm with an approximation guarantee  ≈ 

0.27.We reduce the modularity maximization 

problem into the MAX-CUT problem and then use 

the techniques described in Alon et.al [49] to im 

prove the approximation guarantee to  

 

2.1 Modularity maximization as a strict quadratic 

program  

In this section we briefly describe the 

formulation of modularity maximization as a Strict 

Quadratic Program and it‟s subsequent relaxation as 

a Vector Program and the rounding scheme used. 

Then we analyze the approximation guarantee given 

by this formulation. For a quick overview of 

Quadratic Programming and Vector Programming 
 

2.2 Programming formulation  

For every vertex u we have a variable yu  

{−1, +1}. The value of yu depends upon which 

community it is in, if u lies in C1 then yu = 1 else yu 

= −1. Modularity, the objective function can be 

written as follows 

 

Therefore the optimization problem can be 

written as follows: 

 
Subject to: y2 = 1, ∀ u ∈  V The condition y2 

= 1 simply states that yu ∈  {+1, −1}, ∀ u ∈  V. The 

Quadratic Program (3.4) is an example of a Strict 

Quadratic Program, here both the objective function 

and the conditions are quadratic in the input 

variables. Such problems are often solved by relaxing 

the QP into the corresponding Vector Programming 

problem and then rounding the solution of the VP to 

get the required solution. 

 

2.3 Vector programming relaxation  

To turn a Strict QP into a VP, one replaces 

each variable yu by an n dimensional vector yu and 

each product yuyv by the inner product between those 

vectors, yu • yv. The modularity optimization 

problem then becomes as follows: 

 
Subject to: y2 = 1, ∀ u ∈  V 

The Vector Program (3.5) is a relaxation of 

the Strict Quadratic Program (3.4) because any 

feasible solution to (3.4) yields a solution to (3.5) 

having the same objective value by assigning the 

vector (yu, 0, 0...0) to yu. Vector programs are 

solvable in polynomial time upto any degree of 

accuracy by the Ellipsoid Algorithm. 

 

2.4 Rounding the solution  

 

Now all that remains is to get from the 

vector yu to the scalar yu. This process of getting to 

the solution of the original problem from the solution 

of the relaxation is called rounding. We could start by 

using the randomized rounding process of Goemans 

and Williamson [50] for the MAX-CUT problem. In 

this we choose a random vector r on the surface of the 

unit (n − 1) dimensional sphere, and assign yu = 

sign(yu • r) ∀ u ∈  V . The problem is that unlike in 

the MAX-CUT case where the weights are all taken 

to be all non-negative, we can‟t assume the same 

things about our cuv s, as even if each term cuv yu • 

yv maybe rounded well by cuv yuyv the sum may not 

be, because there maybe cancellations.We use Rietz‟ 

method to round the solution yu ∈  Rn by averaging 
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over Rn with the normalized Gaussian method. Let 

g1, g2 ...gn ∼ N (0, 1) be standard independent 

Gaussian random variables, define g=  

we see that g • g = 1, i.e. it lies on the unit 

hypersphere and is selected to belong randomly 

anywhere on the surface of the hypersphere.We then 

simply take the inner product between the vectors yu 

and g and assign yu = sign(yu.g) 

 

2.5 Reducing modularity maximization for two 

communities to the max-cut problem  

We reduce the two community modularity 

maximization problem to the MAX-CUT problem 

with both positive and negative weights. The MAX-

CUT problem is NP-Hard and for the case when all 

the weights are positive the best known algorithm is 

the 0.878 approximation algorithm by Goemans and 

Williamson [50]. Since we do have negative weights 

the GW algorithm‟s analysis doesn‟t carry over. 

We note that Alon et.al. have reduced the 

MAX-CUT problem to a quantity called the cut-norm 

of a real matrix A, ||A||C . They give a randomized 

 0.56. Algorithm for optimizing ||A||C, thereby 

leading to an algorithm for Modularity Maximization 

with the same approximation ratio. 

In this section, we will describe the 

reduction of the Modularity Maximization problem to 

the MAX-CUT problem, then we briefly describe the 

cut-norm and another related norm||A||∞→1, we then 

describe the reduction of the MAX-CUT problem to 

the cut-norm problem.In the next section we describe 

the algorithm for obtaining an approximation 

guarantee of 0.56. 

 

2.6 Reduction to the MAX-CUT problem  

In addition to the above notation, we have 

the following 

 

 
The RHS of the above equation is exactly 

identical to the mathematical programming 

formulation of the MAX-CUT problem on the graph 

with same vertices as G and with weight on the edge 

(i, j) as (−cij ). 

Which means that given a graph G = (V, E) 

if we make another weighted graph G′ = 

(V, E′) where wij = (−cij ), i.e. the weight of 

an edge between i and j is −cij then the above can be  

 



55 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014 

 

 

 

 

written as 

  
=2MAXCUT (G‟) 

Therefore the optimal value of modularity of 

a bi-partition of G is twice the optimal value of the 

max-cut of the graph G′ as constructed above. Hence 

the reduction.  

optimizing Q ≤P MAX-CUT 

 

2.7 The cut-norm ||*||C and the ||*||  1 norm  

For a real matrix A = (aij )i∈R,j∈ S , the cut-

norm of A is the maximum, over all I ⊂ R, J ⊂ S of 

the 

quantity | Pi∈ I,j∈ J aij |. It is often 

convenient to study the related norm, 

 
Where the maximum is taken over all xi, yj 

∈  {−1, +1}.We now show that for a matrix A, whose 

sum of each row and the sum of each column is zero, 

both the norms are related as 

 
Suppose that ||A||C = Pi∈ I,j∈ J aij (similar 

analysis for the negative case, − Pi∈ I,j∈ J aij ). 

Define xi = 1 for i ∈  I and xi = −1 for i ∈ / I. 

Similarly, yj = 1 for j ∈  J and yj = −1 for j ∈ / J . 

Then we can write,  

 

 
 

2.8 Reduction of the MAX-CUT Problem to the 

cut-norm  

Let G = (V, E) be the given weighted graph 

with W = (wij) as the weight matrix. Label the 

vertices and edges arbitrarily V = {v1, v2 ...vn} and E 

= {e1, e2 ...em}. We describe the construction of a 

2m × n matrix M = (mij) with vanishing row and 

column sums such that 

M AXCU T (G) = ||M ||C and therefore by 

(3.13) M AXCU T (G) = 1 ||M ||∞→1. 

The construction of the matrix M is as 

follows, for each edge ek = (vi, vj ) 1 ≤ k ≤ m, if i < j 

then assign m2k−1,i = m2k,j = wij and m2k,i = 

m2k−1,j = −wij . The rest of the entries being zeroes. 

It is easy to see that by the above construction the 

row and the column sums are zero. It is also easy to 

see that M AXCU T (G) = ||M ||C ⇒ M AXCU T (G) 

= 1 ||M || 

∞→1. Asn2m 

||M ||∞→1 = max Pi=1 Pj=1 mij xiyj , we 

observe that in the maximum cut all the vertices on 

one side of the cut (i.e in the same community) will 

get the same value of y, and the vertices on the other 

side of the cut will get the value −y, the values of x 

adjust themselves accordingly so as to maximize ||M 

||∞→1. 

Optimizing Q ≤P MAX-CUT ≤P Cut-norm 

In the next section we describe the algorithm 

due to Alon et.al [49] to maximize the || ∗  ||∞→1 

norm of a real valued matrix. Therefore the algorithm 

from the next section to maximize the ||∗ ||∞→1 norm 

along with the chain of reductions from modularity 

maximization to the || ∗  ||∞→1 norm supplies us with 

an algorithm for modularity maximization with the 

same approximation guarantee. 

 

3.0 Extended Modularity  

 

We have extended the definition of 

Newman‟s Modularity metric so as to allow 

overlapping communities; here we present the 

extension and its basic idea, the sharing function. We 

also discuss some salient properties of this metric and 

the sharing function. 

 

3.1 Intuition  

Since we want to allow overlaps in the 

communities we create, we must then have a notion 

of a vertex belonging to different communities at 

once. Let G = (V, E) be the graph, and let C be the set 

of communities and let pc denote the  
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probability/contribution/strength with which 

the vertex i belongs to the community c ∈  C. So for 

each node i we have a probability vector 

 

  are the  

communities.So basically the strength with 

which a node I belongs to a particular communities c 

is denoted by For the original modularity case this  

 
Concentrating on the first term on the right 

hand side aij δci, cj, we see that the δ function is the 

one that leads to an edge contributing either 0 (when i 

and j are in different communities) or 1 (when i and j 

are in the same community) to a particular 

community. So the contribution of an edge to a 

particular community is weighed by the δ function.If 

suppose instead we were to replace this δci, cj 

function by some other suitable function f  

 

3.2 The sharing function f  

Ideally we would like the shoaring function 

f: [0, 1] × [0, 1] → [0, 1] to have the following 

properties f (0, x) = 0, ∀ x (3.3)  

f (1, 1) = 1 (3.4) f(x, The function should 

have a concave surface and actually be congenial to 

sharing. Some functions that fit our bill: 

 

 

 
There is yet another function, the two 

dimensional logistic function, which is considered the 

smooth version of the delta function, though strictly 

speaking it does not follow the two properties 

mentioned above, but it approximately follows them 

i.e. 

f (0, x) ≈ 0, ∀ x 

f (1, 1) ≈ 1 

The function being: 

f (p1, p2;  

 

Along both the axes its value is 

approximately 0, and though not apparent in the value 

at (1, 1) is 0.995. Since this function is also 

decomposable, we can transform it to satisfy the 

above properties exactly. 

The best results we have got is by using the 

function f (p1, p2;  

With the parameter a = 1. From this point 

onwards we will simply call this sharing function f. 

 

3.3 Extended modularity  

Our extension to modularity for overlapping 

networks is as follows: 
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4.0 Algorithm to Maximize Extended Modularity  

 

We have two algorithms that try to 

maximize modularity, one of them OSG (One Step 

Greedy), roughly finds the overlapping configuration, 

subsequent incremental improvement can be done on 

this initial configuration. The other is basically a 

formulation of overlapping modularity optimization 

as a Genetic Optimization problem. 

4.1 One step greedy algorithm: osg  

 

4.1.1 Terminology  

A node i is called a boundary node if it has 

edges going into any community apart from it‟s own 

community, and let the set Ci denote all those 

communities to which the node i has links to, 

therefore any node on the boundary will have |Ci| ≥ 2. 

Sharing a node i between a set C of communities in 

this case means pc = 1/|C| ∀ c ∈  C. 

 

4.1.2 Idea  

The idea is simple, using the original 

definition of modularity, the one for the non-

overlapping case, we first hard-partition the graph 

into communities. Then for each of the boundary 

nodes we try to share it with the communities it is 

bordering, we then select the node that gives the 

largest increase in modularity and add it into that 

community and iterate. We do this till there is no 

more increase in the modularity. 

 

4.1.3 Criticism  

Basically the algorithm is a quick and dirty 

guide to what all overlaps can be there; it is na¨ıve in 

the sense that even if a node can belong 

overwhelmingly to one or the other community even 

while being shared, it will contribute equal weights to 

both the communities in which it is shared. This is the 

main drawback, but it does serve it‟s purpose, that of 

showing approximately where the sharing is taking 

place. 

 

4.2 Genetic algorithm: GA  

The Genetic Algorithms are adaptive search 

heuristic based algorithms, these aims to simulate the 

natural process of evolution and natural selection to 

produce the „fittest‟ individuals. We transform the 

modularity maximization problem as a Genetic 

Optimization problem in which the number of 

communities can be given as a parameter. 

 

4.2.1 Introduction to GAs  

Genetic Algorithms aim to mimic what 

nature seems to be doing in real life to produce the 

best and the fittest individuals, i.e. the axioms of 

survival of the fittest, crossover and genetic mutation, 

natural selection etc. 

Basically any genetic algorithm will have 

the following two things 

 

1. A representation of the solution space.  

2. A fitness function to evaluate a particular 

solution.  

 

A particular candidate solution is called an 

individual, and the genetic material of each individual 

is called the chromosome. These individuals are 

evaluated on the basis of the fitness function; the 

fitness function is the quantity that we are aiming to 

optimize. The algorithm applies various search 

heuristics to come up with an optimal solution. 

Typically the heuristics are as follows: 

1. Initialization: The individuals are initialized 

randomly to form an initial population this can 

range between a few hundred to a few 

thousand individuals.  

2. Selection: A chosen group of individuals is 

used to breed the next generation of the 

population. Usually it is the fittest individuals 

of the previous generation who are selected to 

breed and form the next generation. The 

individuals who are not deemed to be fit are 

neglected in this step.  

3. Reproduction: Genetic Operators like 

Crossover and Mutation are applied to make 

up for the individuals that we discarded in the 

above step.  

 

(a) Crossover: Here basically two individuals 

from the previous generation come to- gether 

and via some operation form a new individual. 

Some of the balance elements required to 

complete the population are made in this way.  

(b) From Scratch: The rest of the individuals to 

complete the population are made brand new 

from scratch.  
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(c) Mutation: Here we take an existing individual 

and change it‟s chromosome. We do this so as 

to improve our chances of finding the global 

optimum.  

 

4. Termination: Some criteria is kept, to 

terminate the solution, like a fixed number of 

iterations (epochs), or some other cost measure 

is used.  

4.2.2 Chromosome representation  

As the name suggests, we make the rest of 

the individuals from scratch. Normalization should 

also be done. 

 

4.2.4.5 Mutation  

This depends on the exact problem at hand. 

Given a graph G = (V, E) and the set of communities 

C we are trying to get for each i ∈  V the set of 

belonging probabilities pc ∀ c ∈  C. So our 

chromosome looks like a |V | × |C| matrix I. Where Iij 

= pj. 

 

4.2.3 Fitness function  

In our case it is nothing but the overlapping 

modularity, 

 
 

4.2.4 Algorithm  

The algorithm takes the following three 

parameters, nindiv, ncomms, and nepocs. Where 

nindiv are the number of individuals that we initialize 

randomly, ncomms is a parameter for the number of 

communities, and nepochs is the number of iterations 

which we allow the algorithm to run before we report 

the solution. 

 

4.2.4.1 Intialization  

All the chromosomes of all the individuals 

are initialized to random variables. We have to 

normalize those to ensure that the probabilities for 

each node sum upto 1 i.e. 

 

 
 

4.2.4.2 Selection  

All the individuals are now ordered on the 

basis of the fitness of their chromosome; here we 

have selected a fixed percentage of individuals to 

carry forward to the next generation. The rest of the 

individuals are made up partly by crossover from the 

better individuals of the previous generation, while 

the rest are made from scratch. 

4.2.4.3 Crossover  

 
 

4.2.4.4 From scratch  

For a fixed percentage of individuals, we 

select a node and a community at random and change 

the belonging factor of that individual for that 

particular node and community, keeping in mind to 

keep normalizing. 

 

4.2.4.6 Clean up  

In addition to the above „mandatory‟ steps, 

Nicosia et.al. implement a cleanup function, it 

basically sees the following two parameters for a 

randomly selected node, i and a randomly selected 

community c of every individual, 

 
If avgN eigh(i, c) ≥ avgN otN eigh(i, c) then 

we increase pc by a small quantity p, that we call the 

momentum.Else we decrease the same quantity by the 

momentum, if pc < p then we set it to 0.We have 

presented and analyzed the Original Modularity 

Optimization problem as a Math- ematical 

Programming problem; we have also reduced the 

problem of partitioning a graph into two communities  
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to maximize modularity to the MAX-CUT problem 

and presented three approximation algorithms to 

maximize modularity. 

We see that the extended modularity based method 

correctly groups the nodes into com- munities which 

are either known apriori, or goes one step 

better and discovers a hidden structure in the 

network, also that the sharing is pretty intuitive with 

the nodes which have an even degree distribution 

between communities coming out as shared. The 

extent of sharedness and allowed overlap can be 

controlled by varying the parameter in the sharing 

function. 

Though Modularity inherently has some 

problems regarding the resolution limit, we haven‟t 

encountered it in our real-life examples that we have 

tested upon.The extension to modularity is simple, 

logical and straightforward, and we have given 

general characteristics for the sharing function, so as 

to keep the door open for further improvements in 

that area. It also reduces to the original modularity 

function in case of a hard-partition and follows its 

salient features. 

The Genetic Algorithm based approach 

takes O(n2kei) time where n is the number of nodes, k 

the number of communities to be found, e number of 

epochs and i the number of individuals to be 

generated. This is a heavy on space too, requiring nki 

floating numbers to be stored. We would like to have 

approximation algorithms based on Mathematical 

Programming to optimize extended modularity, but 

even drastic simplifications of our extended 

modularity have resisted being formulated as 

tractable mathematical programs. 

 

5.0 Conclusion  

 

We have presented and analyzed the 

Original Modularity Optimization problem as a Math- 

ematical Programming problem; we have also 

reduced the problem of partitioning a graph into two 

communities to maximize modularity to the MAX-

CUT problem and presented three approximation 

algorithms to maximize modularity.We see that the 

extended modularity based method correctly groups 

the nodes into com- munities which are either known 

apriori, or goes one step better and discovers a hidden 

structure in the network, also that the sharing is pretty 

intuitive with the nodes which have an even degree 

distribution between communities coming out as 

shared. The extent of sharedness and allowed overlap 

can be controlled by varying the parameter in the 

sharing function.Though Modularity inherently has 

some problems regarding the resolution limit, we 

haven‟t encountered it in our real-life examples that 

we have tested upon.The extension to modularity is 

simple, logical and straightforward, and we have 

given general characteristics for the sharing function, 

so as to keep the door open for further improvements 

in that area. It also reduces to the original modularity 

function in case of a hard-partition and follows its 

salient features. 

The Genetic Algorithm based approach 

takes O(n2kei) time where n is the number of nodes, 

k the number of communities to be found, e number 

of epochs and i the number of individuals to be 

generated. This is a heavy on space too, requiring nki 

floating numbers to be stored. We would like to have 

approximation algorithms based on Mathematical 

Programming to optimize extended modularity, but 

even drastic simplifications of our extended 

modularity have resisted being formulated as 

tractable mathematical programs. 
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