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ABSTRACT 

 

The main task in object tracking is to filter the movement information from undesired dynamic objects because 

this information is considered as noise. To cope with these difficulties the implementation of edge segment 

tracking (EST) algorithm based kalman filter is presented which is used to track the desired dynamic object and 

to filter the noise. The estimation of current state depends on the variables i.e. time, velocity, covariance and 

noise mainly. Segmenting objects is capable of identifying moving objects in image sequence. One object may 

consist of several parts with different motion as object motion and shape are less consistent within frames. The 

hardware implementation of kalman filter is done on FPGA (Virtex 5) using VHDL on Xilinx ISE simulator in 

the range of MHz clock frequency and tested with an ADC and DAC which were integrated into the design to 

support analog signals at the input and output of the system. 
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1.0 Introduction 

 

Kalman Filter follows an EST algorithm. 

Due to the presence of real time input there is a need 

of result optimization (F. A. Faruqi at el, 1980). 

Kalman filter is used to estimate the state of a linear 

system where state assumed to be distributed by a 

Gaussian. Kalman filter is derived from a principle 

which explains a property that specifies that product 

of two Gaussian distribution is another Gaussian 

distribution. Kalman Filter using state techniques as 

state space methods helps in simplifying the 

implementation of the filter in the discrete domain. 

As the inputs are not fixed so the location of object is 

shown in terms of probability. By predicting the 

object position from the previous information and 

verifying the existence of the object at the predicted 

position. Estimation is performed to reach to the real 

value by the help of sampling process which further 

get extended for the larger domain. Estimation Filter 

theory states that the state vector is estimated for a 

given time based upon all past measurements. It is an 

optimal algorithm because of its less computational 

requirements. There are two approaches to implement 

kalman filter either as hardware or software. There 

are two types of architecture can be possible for 

kalman filter and they are: 

Loop Rolled Architecture 

 

Fig 1: Loop Rolled Architecture 

 

 
 

In loop architecture common hardware is 

using for common logic as division, multiplication, 

etc which is reducing the hardware (F. A. Faruqi et al, 

1980). 

 

Loop Unrolled Architecture 

 

Fig 2: Loop Unrolled Architecture 
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In loop unrolling architecture the area get 

increased as number of blocks is increasing due to the 

use of separate hardware for different states. But with 

that the throughput is increasing as well with the 

speed (F. A. Faruqi et al, 1980). 

The further sections describe the 

implementation of EST algorithm was designed and 

implemented within the FPGA and tested with an 

ADC and DAC which were integrated into design to 

support analog signals at the input and output of the 

system. 

 

2.0 Previous Work Analysis  

 

When we analyse the previous works it is 

noticed that main concentration is done on the 

hardware area and the speed of the filter as in 

reference. Many hardware and software solutions 

have been proposed to achieve this objective.  

An Algebraic transformation method is 

proposed to reduce the differential equation and to 

obtain explicit expression for the filter gains which 

results in a substantial reduction of the computer 

burden involved in estimating the targets states (Y. 

Bar-Shalom et al, 1993).  

After that a mapping methodology is 

proposed to delivering systolic and wave front array 

which allow the fastest pipelining rates (S. Y. Kung 

et al, 1991).  

Many more approaches were proposed but 

by seeing the era the major design issues arrive of 

optimizing area and power consumption and 

reduction of mean squared error. 

Then Kalman Filter is introduced which 

reduces the mean squared error. The overall objective 

is to estimate x (k). 

The difference between the estimate of X^ 

(k) and x (k) itself is termed the error; f (e(k)) = 

f(x(k)-X^(k)) this function should be positive and 

increase monotonically (L. P. Maguire et al 1991). 

An error function which exhibits these characteristics 

is the squared error function and represent as f (e(k)) 

= (x(k)-X^(k))2. 

For the ability of the filter to predict 

different input data over a period of time a metric is 

the expected value of the error function. 

Therefore it represent as E [f(e(k))]. This 

result in the mean squared error as e(t) = E[e
2
(k)]. 

 

3.0 Implementation  

 

3.1 Functional description of designed kalman 

filter using (EST) algorithm  

A basic top module block diagram of 

kalman filter is shown in figure 3. This is a looped 

rolled architecture of kalman filter which is used to 

implement the EST algorithm. 

 

Fig 3: A Basic Diagram of Kalman Filter 

 

 
Where, Pinitial is the predicted variance  

Xinitial is the predicted state  

Pest is the estimated variance  

Xest is the estimated state  

Kalman filter has two models as process 

model and measurement model. The whole procedure 

consist three steps and they are:  

 Prediction  

 Measurement  

 Correction  

 

Prediction is the state which is based on the 

previous state.  

Measurement is calculated by the help of 

measurement model.  

Correction is estimated by the help of 

kalman gain, which got change with every sample.  

The equation can be shown as:  

x (k+1) = A x (k) + B u (k) + w (k) ,  

This equation is showing the prediction state 

for the time (k+1) where,  

A is the state transition matrix,  

B is the input transition matrix,  
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u (k) is the uncontrolled vector which is taken zero 

for the simplification,  

w (k) is the process additive noise  

 

Y (k+1) = C x (k+1) + v (k+1),  

This is the measurement equation where,  

C is the observation matrix ,  

v (k+1) is the measurement additive noise  

X^(k+1) = x (k+1) + K (k+1)[ Y(k+1) – 

x(k+1) ]  

This equation is showing the corrected 

estimated output. 

 

 

Fig 4: Block Diagram Showing Three Basic States 

of Kalman Filter 

 

 
 

Kalman filter equation divided into two 

groups:  

 

1. Time Update  

2. Measurement Update  

 

 

Time update equations can be represented 

as:  

X^(k/k-1) = AkX^(k-1/k-1)  

P(k/k-1) = AkP(k-1/k-1)AkT + Q(k)  

Measurement equations can be represented 

as:  

X^(k/k) = X^(k/k-1) + Kk [Y(k) – 

CkX^(k/k-1)]  

Kk = P(k/k-1) CkT (Ck P(k/k-1)CkT + 

R(k))-1  

P(k/k) = (I – KkCk) P(k/k-1)  

Where, X^(k/k-1) is predicted state  

P(k/k-1) is predicted variance  

X^(k/k) and X^(k-1/k-1) are updated state 

for (k-1) and k samples  

P(k/k) and P(k-1/k-1) are updated variance 

for (k-1) and k samples  

Kk is the kalman gain for state k  

By assuming the process noise w(k) and 

measurement noise v(k) is uncorrelated and process 

noise is zero mean white noise having known 

covariance matrices. 

E [w(k), w(l)T] = Q(k) if k=l;  

= zero otherwise;  

E [v(k), v(l)T] = R(k) if k=l;  

= zero otherwise;  

E [w (k), v (k)] = zero for all values of k and 

l 

Where Q(k) is process covariance noise and 

R(k) is measurement covariance noise. As we the 

initial value of both mean and covariance matrix are 

unknown so we are assuming the initial value of state 

as  

X^(0/0) = E{x(0)} and  

P (0/0) = E[{x(0) – X^(0)}{x(0) – X^(0)}T]  

E[||x(k+1) – X^(k+1)||2] = E[{x(k+1)-

X^(k+1)}*  

{x(k+1)-X^(k+1)}T]  

 

A. Derivation of implemented ORDP algoritm  

The estimation of state X^(k+1) based on the 

observations up to time k, z1,z2…,zk, namely is 

considered (M. Munu et al, 1992).  
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Pl (k/k-1) is the priori error covariance 

estimate, X1(k/k- 1) is the priori state estimate, Y(k) 

is the output estimate, G (k) is the Kalman gain, X 

(k/k) is the posterior state estimate, and 

P (k/k) is the posterior error covariance 

estimate. Q(k) = E[W(k)WT(k)] is the system noise 

covariance matrix and R(k) = E[V(k)VT(k)] is the 

measurement noise covariance matrix σ12 = 

E[U1
2
(k)] and σ2

2
(k) = E[U2

2
(k)] are the variances of 

T multiplied by the radial and angular acceleration 

respectively and σρ
2
(k) = E[V12(k)] and σθ

2
(k) = 

E[V2
2
(k)] are the variances of T multiplied by the 

radial and angular measurement noise respectively. 

The tracking systems under consideration utilize 

sensors that provide measurements of range and 

bearing. Vehicle modelling is related to process 

model which includes two variables range and 

bearing. Present model is designed to track an object 

moving with constant speed, hence there should be 

four variables range, rate of change of range, bearing 

and rate of change of bearing. Sensor modelling is 

related to measurement model which includes only 

two variable range and bearing. 

 

3.2 Architecture hardware design approaches of 

kalman filter implementation on FPGA  

 

Fig: 5. Block Diagram of Complete System 

 

 
 

This shows the complete kalman filter 

system, including an FPGA based kalman filter, 

analog to digital converter (ADC), and digital to 

analog converter (DAC). The goel of this part of the 

project is to produce a system where data can be 

streamed into and out of kalman filter as analog 

signals and processed into real time. The ADC 

connects of the kalman filter by the ADC controller, 

designed within the FPGA. The ADC controller 

directs the ADC when to take a sample of the analog 

input , and sends the digital value to the input of 

kalman filter . Like the ADC, the DAC connects to 

the kalman filter using a FPGA design, the DAC 

controller. This module sends the digital output of the 

kalman filter to the DAC, and then instructs it when 

to output that value as an analog signal, this 

completes the system. 

The responsibility of this kalman filter 

design is to reject higher frequencies signals from 

passing through the system, but allow lower 

frequencies to pass unaffected. 

 

3.1.1 kalman filter 

The kalman filter is an important part of this project. 

The purpose of kalman filter is to use measurements 

observed over time, which contains random 

variations of noise, and produce a value that is  
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accurate to the true values of the measurements. It 

does this by predicting a value, estimating the  

uncertainty of the predicted value, and computing a 

weighted average of the predicted value and 

calculated value. The kalman filter first predicts the 

next value as well as the error covariance. When the 

next value comes into the filter, the kalman gain is 

computed, the estimate is updated with observed 

value, and the error covariance is updated. This helps 

to get rid of the noise within the signal.  

A kalman filter is different from other filters 

such as low pass or high pass filters. These filters are 

linear, time invariant systems which are designed 

with frequency response in mind. These filters tend to 

be single input single output systems. In this the 

kalman filter we are designing could be replaced by 

one of these filters because it has all the characeristics 

just described. However in this we show how an 

FPGA based kalman filter could be beneficial for the 

locator device. The kalman filter in the locator device 

is designed with the characteristics of a normal 

kalman filter. These characteristics involve being a 

multiple input, multiple output system. Also they are 

linear, time variant systems which are designed with 

a mean square error approach.  

The way in which Locator device uses its 

kalman filter is by using multiple input signals. Each 

of these signals by themselves could be ued to 

determine location. However the system cannot rely 

on any one source because if different scenarios, each 

of these input signals could be contaminated by 

different amounts of noise. So, kalman filter takes the 

information from all these signals, uses it to reduce 

the noise and produces its best estimate for the 

location of the first responders. A kalman filter is 

used to read the transmitter and get rid of the noise 

and return back the exact location of a particular 

person. 

 

3. 2.2 Designing the fpga based kalman filter 

Since the design was quite complicated, it 

was determined that the best approach was to break 

the design down into small pieces. 

 

3. 2.2.1 Matrix multiplications 

The first obstacles presented were the three 

matrix multiplications. There were certain instances 

where 3x3 matrix multiplications are required. Some 

of the multipliers are equipped with by single 

multiplications. So there is not enough multipliers are 

available in the FPGA. We came to the conclusion 

that we had to multiplex what values are being 

multiplied at certain times, so that each multiplier 

could be used more than once. The entire 3x3 matrix 

remains the same for these calculations but the row of 

3 is what is getting multiplexed for another 3 x 3 

matrix. A module was created to perform the 9 

multiplications between a 1x3 matrix and a 3x3 

matrix. In order to perform a matrix multiplication 

with two 3x3 matrices, this module needs to be used 

3 times. For the multiply function we have used the 

logic of complementing the negative value then we 

get the 32 bit product of two 16bit operand. This 

multiplier function is used for the matrix 

multiplication.  

 

prod1 <= multiply (row1, col11) + multiply 

(row2, col21) + multiply (row3, col31);  

prod2 <= multiply (row1, col12) + multiply 

(row2, col22) + multiply (row3, col32);  

prod3<=multiply (row1, col13) + multiply 

(row2, col23) + multiply (row3, col33); 

 

Fig 6: Multiplexing for Count 3-8 

 

 
 

3. 2.2.2 Division 

Another task is we dividing two values 

within the kalman filter. Performing division is 

adifficult task because it taks a lot VHDL code and 

uses a lot of resources. It was decided that the best 

approach was to use the built in core generator in the 

Xilinx software that the VHDL design was being 

written in. The core generator can create a number of 

different functions and it uses an efficient amount of 

resources. Once we created this module, weworked to 

include it within our Kalman filter design. The 

schematic of the function can be seen below: 
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Fig 7: Divide Function 

 

 
 

Two 16 bit signed values are entered into the 

function. A 16 signed bit quotient is output, as well as 

a remainder. This module is very useful within our 

design, and was quite simple to implement. 

 

3. 2.2.3 Using registers to store previous values 

The use of registers was very important to 

the design. Since the design uses previous values 

needed to be stored in registers. Also, the values in 

these registers have to be loaded into the design along 

with the input. Without using registers and loading 

values in on each clock value, the design would cause 

a continuous loop. This happens because the output 

changes, the current calculations would change 

causing the output to change again, and this would 

keep happening. So, once we knew we neede to use 

registers to store previous values, a block diagram 

was first to better understand how this could be 

done.The block diagram proved to be very helpful. A 

simple project was first created to make sure the 

process worked before it was added to the overall 

project. This turned out to be a success and we could 

clearly see values being stored in registers, and then 

loaded from registers. The block diagram for using 

the registers can be seen below. On the rising edge of 

the clock, or for testing purposes, when a button is 

pressed, flip flop load the previous output as well as 

the current input. After going through the next state 

logic, the output values are stored in the registers and 

remain their until the next load. 

 

Fig 8: Main Block Diagram 

 

 
 

3.2.2.4 Using the kalman filter with real time 

signals 

The goal of this project is to be able to send 

an analog signal into the project, and output the 

resulting analog signal . To successfully do this, it is 

necessary to use an analog to digital converter (ADC) 

and digital to analog converter (DAC) to stream data 

into and out of the system using analog signals.  

-- Control for temp  

process(clk)  

begin  

if rising_edge(clk) then  

if count = 0 then  

if load = '1' then  

temp <= data;  

elsif currentstate = Send then  

temp <= temp(14 downto 0) & '0';  

end if;  

end if;  

end if;  

end process;  

-- Next State Logic  

process(currentstate, load, regcount)  

begin  

case currentstate is  

when Idle =>  

if load = '1' then  

 

nextstate <= Low;  

else  

nextstate <= Idle;  
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end if;  

when Low =>  

nextstate <= Send;  

when Send =>  

if regcount = 15 then  

nextstate <= High;  

else  

nextstate <= Send;  

end if;  

when High =>  

nextstate <= Idle;  

end case;  

end process; 

 

Fig 9: State Machine of DAC 

 

 
 

Fig 10: State Machine of ADC 

 

 
 

--Next state logic  

process(currentstate, load, regcount)  

begin  

case currentstate is  

when Idle =>  

if load = '1' then  

nextstate <= CSLow;  

else  

nextstate <= Idle;  

end if;  

when CSLow => 

nextstate <= Receive; 

when Receive => 

if regcount = 15 then 

nextstate <= CSHigh; 

else 

nextstate <= Receive; 

end if; 

when CSHigh => 

nextstate <= Idle; 

end case; 

end process; 

-- Control for temp 

process(clk) 

begin 

if rising_edge(clk) then 

if nextstate = Receive then 

if count = 0 then 

temp <= temp(14 downto 0) & Sdata; 

elsif count = 3 then 

temp(0) <= Sdata; 

end if; 

end if; 

end if; 

end process; 

-- Load 12 data bits to data 

process(clk) 

begin 

if rising_edge(clk) then 

if currentstate = CSHigh then 

data <= temp(11 downto 0); 

end if; 

end if; 

end process; 

CS is what controls when a sample is taken. 

CS is active low and tells the ADC to create a 16 bit 

value out of the analog sample. Like the DAC, we 

created a load signal to tell the ADC controller that an 

input is desired. When load is high, CS goes low on 

the rising edge of sclk. This allows for the setup time 
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to be achieved before the first value is input 

on the falling edge of the clock. Temp shifts in one 

bit at a 

time on the rising edge of sclk and after 15 cycles, 

temp is ready to output a 16 bit value, and CS is sent  

high. The values are available on the falling 

edge of sclk, but taking them on the rising edge 

assures that they are valid. The only bit that is taken 

on the falling edge is the first bit, and this is because 

it is sent along with the second bit on the first falling 

edge. The values of Sdata were shifted into temp.  

The first step to this process is using a DAC 

to output the values of the Kalman Filter as an analog 

signal. The first thing we had to do was to choose 

which DAC to work with. The DAC is of 12-bit 

instead of a 16-bit DAC means that there is a loss of 

precision, but since only the least significant bits are 

lost, the difference in precision does not affect the 

performance of the kalman filter. 

 

Fig: 10. State Machine of ADC to DAC 

 

 
 

 
 

4.0 Conclusion  

 

In conclusion, we have created a successful 

Kalman Filter, which interfaces with an ADC and 

DAC to form a complete system that streams analog 

data in and out. We also created an ADC controller 

and DAC controller so that the Kalman Filter, ADC 

and DAC could be integrated together and used for 

testing purposes.A complete system like the one we 

have built can be altered, and added onto, to perform 

the tasks of the Kalman Filter in the PPL(Precision 

Personal Locator) system, and can be included within 

the implementation of the actual system to process 

the data in real time. What all of this means is that 

another group can learn from everything that has been 

documented here to enhance our design to support a 

more complicated version of a Kalman Filter. 
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