
International Journal of Advance Research and Innovation

Vol. 2(2), Apr-Jun 2014, pp. 69-77

Doi: 10.51976/ijari.221411

www.gla.ac.in/journals/ijari

© 2014 IJARI, GLA University

Article Info

Received: 05 Mar 2014 | Revised Submission: 20 Apr 2014 | Accepted: 28 May 2014 | Available Online: 15 Jun 2014

*Corresponding Author: Department of Electronics & Communication Engineering, Meerut Institute of

Technology, Meerut, India (E-mail: jollychaudhary1111@gmail.com)
**Department of Electronics & Communication Engineering, Meerut Institute of Technology, Meerut, India

***Department of Electronics & Communication Engineering, Meerut Institute of Technology, Meerut, India

Implementation of Kalman Filter using Vhdl

Jolly Baliyan*, Atiika Aggarwal** and Ashwani Kumar***

ABSTRACT

The main task in object tracking is to filter the movement information from undesired dynamic objects because

this information is considered as noise. To cope with these difficulties the implementation of edge segment

tracking (EST) algorithm based kalman filter is presented which is used to track the desired dynamic object and

to filter the noise. The estimation of current state depends on the variables i.e. time, velocity, covariance and

noise mainly. Segmenting objects is capable of identifying moving objects in image sequence. One object may

consist of several parts with different motion as object motion and shape are less consistent within frames. The

hardware implementation of kalman filter is done on FPGA (Virtex 5) using VHDL on Xilinx ISE simulator in

the range of MHz clock frequency and tested with an ADC and DAC which were integrated into the design to

support analog signals at the input and output of the system.

Keywords: Kalman Filter; FPGA; Prediction Model; Measurement Model; VHDL.

1.0 Introduction

Kalman Filter follows an EST algorithm.

Due to the presence of real time input there is a need

of result optimization (F. A. Faruqi at el, 1980).

Kalman filter is used to estimate the state of a linear

system where state assumed to be distributed by a

Gaussian. Kalman filter is derived from a principle

which explains a property that specifies that product

of two Gaussian distribution is another Gaussian

distribution. Kalman Filter using state techniques as

state space methods helps in simplifying the

implementation of the filter in the discrete domain.

As the inputs are not fixed so the location of object is

shown in terms of probability. By predicting the

object position from the previous information and

verifying the existence of the object at the predicted

position. Estimation is performed to reach to the real

value by the help of sampling process which further

get extended for the larger domain. Estimation Filter

theory states that the state vector is estimated for a

given time based upon all past measurements. It is an

optimal algorithm because of its less computational

requirements. There are two approaches to implement

kalman filter either as hardware or software. There

are two types of architecture can be possible for

kalman filter and they are:

Loop Rolled Architecture

Fig 1: Loop Rolled Architecture

In loop architecture common hardware is

using for common logic as division, multiplication,

etc which is reducing the hardware (F. A. Faruqi et al,

1980).

Loop Unrolled Architecture

Fig 2: Loop Unrolled Architecture

70 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014

In loop unrolling architecture the area get

increased as number of blocks is increasing due to the

use of separate hardware for different states. But with

that the throughput is increasing as well with the

speed (F. A. Faruqi et al, 1980).

The further sections describe the

implementation of EST algorithm was designed and

implemented within the FPGA and tested with an

ADC and DAC which were integrated into design to

support analog signals at the input and output of the

system.

2.0 Previous Work Analysis

When we analyse the previous works it is

noticed that main concentration is done on the

hardware area and the speed of the filter as in

reference. Many hardware and software solutions

have been proposed to achieve this objective.

An Algebraic transformation method is

proposed to reduce the differential equation and to

obtain explicit expression for the filter gains which

results in a substantial reduction of the computer

burden involved in estimating the targets states (Y.

Bar-Shalom et al, 1993).

After that a mapping methodology is

proposed to delivering systolic and wave front array

which allow the fastest pipelining rates (S. Y. Kung

et al, 1991).

Many more approaches were proposed but

by seeing the era the major design issues arrive of

optimizing area and power consumption and

reduction of mean squared error.

Then Kalman Filter is introduced which

reduces the mean squared error. The overall objective

is to estimate x (k).

The difference between the estimate of X^

(k) and x (k) itself is termed the error; f (e(k)) =

f(x(k)-X^(k)) this function should be positive and

increase monotonically (L. P. Maguire et al 1991).

An error function which exhibits these characteristics

is the squared error function and represent as f (e(k))

= (x(k)-X^(k))2.

For the ability of the filter to predict

different input data over a period of time a metric is

the expected value of the error function.

Therefore it represent as E [f(e(k))]. This

result in the mean squared error as e(t) = E[e
2
(k)].

3.0 Implementation

3.1 Functional description of designed kalman

filter using (EST) algorithm

A basic top module block diagram of

kalman filter is shown in figure 3. This is a looped

rolled architecture of kalman filter which is used to

implement the EST algorithm.

Fig 3: A Basic Diagram of Kalman Filter

Where, Pinitial is the predicted variance

Xinitial is the predicted state

Pest is the estimated variance

Xest is the estimated state

Kalman filter has two models as process

model and measurement model. The whole procedure

consist three steps and they are:

 Prediction

 Measurement

 Correction

Prediction is the state which is based on the

previous state.

Measurement is calculated by the help of

measurement model.

Correction is estimated by the help of

kalman gain, which got change with every sample.

The equation can be shown as:

x (k+1) = A x (k) + B u (k) + w (k) ,

This equation is showing the prediction state

for the time (k+1) where,

A is the state transition matrix,

B is the input transition matrix,

Implementation of Kalman Filter using Vhdl 71

u (k) is the uncontrolled vector which is taken zero

for the simplification,

w (k) is the process additive noise

Y (k+1) = C x (k+1) + v (k+1),

This is the measurement equation where,

C is the observation matrix ,

v (k+1) is the measurement additive noise

X^(k+1) = x (k+1) + K (k+1)[Y(k+1) –

x(k+1)]

This equation is showing the corrected

estimated output.

Fig 4: Block Diagram Showing Three Basic States

of Kalman Filter

Kalman filter equation divided into two

groups:

1. Time Update

2. Measurement Update

Time update equations can be represented

as:

X^(k/k-1) = AkX^(k-1/k-1)

P(k/k-1) = AkP(k-1/k-1)AkT + Q(k)

Measurement equations can be represented

as:

X^(k/k) = X^(k/k-1) + Kk [Y(k) –

CkX^(k/k-1)]

Kk = P(k/k-1) CkT (Ck P(k/k-1)CkT +

R(k))-1

P(k/k) = (I – KkCk) P(k/k-1)

Where, X^(k/k-1) is predicted state

P(k/k-1) is predicted variance

X^(k/k) and X^(k-1/k-1) are updated state

for (k-1) and k samples

P(k/k) and P(k-1/k-1) are updated variance

for (k-1) and k samples

Kk is the kalman gain for state k

By assuming the process noise w(k) and

measurement noise v(k) is uncorrelated and process

noise is zero mean white noise having known

covariance matrices.

E [w(k), w(l)T] = Q(k) if k=l;

= zero otherwise;

E [v(k), v(l)T] = R(k) if k=l;

= zero otherwise;

E [w (k), v (k)] = zero for all values of k and

l

Where Q(k) is process covariance noise and

R(k) is measurement covariance noise. As we the

initial value of both mean and covariance matrix are

unknown so we are assuming the initial value of state

as

X^(0/0) = E{x(0)} and

P (0/0) = E[{x(0) – X^(0)}{x(0) – X^(0)}T]

E[||x(k+1) – X^(k+1)||2] = E[{x(k+1)-

X^(k+1)}*

{x(k+1)-X^(k+1)}T]

A. Derivation of implemented ORDP algoritm

The estimation of state X^(k+1) based on the

observations up to time k, z1,z2…,zk, namely is

considered (M. Munu et al, 1992).

72 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014

Pl (k/k-1) is the priori error covariance

estimate, X1(k/k- 1) is the priori state estimate, Y(k)

is the output estimate, G (k) is the Kalman gain, X

(k/k) is the posterior state estimate, and

P (k/k) is the posterior error covariance

estimate. Q(k) = E[W(k)WT(k)] is the system noise

covariance matrix and R(k) = E[V(k)VT(k)] is the

measurement noise covariance matrix σ12 =

E[U1
2
(k)] and σ2

2
(k) = E[U2

2
(k)] are the variances of

T multiplied by the radial and angular acceleration

respectively and σρ
2
(k) = E[V12(k)] and σθ

2
(k) =

E[V2
2
(k)] are the variances of T multiplied by the

radial and angular measurement noise respectively.

The tracking systems under consideration utilize

sensors that provide measurements of range and

bearing. Vehicle modelling is related to process

model which includes two variables range and

bearing. Present model is designed to track an object

moving with constant speed, hence there should be

four variables range, rate of change of range, bearing

and rate of change of bearing. Sensor modelling is

related to measurement model which includes only

two variable range and bearing.

3.2 Architecture hardware design approaches of

kalman filter implementation on FPGA

Fig: 5. Block Diagram of Complete System

This shows the complete kalman filter

system, including an FPGA based kalman filter,

analog to digital converter (ADC), and digital to

analog converter (DAC). The goel of this part of the

project is to produce a system where data can be

streamed into and out of kalman filter as analog

signals and processed into real time. The ADC

connects of the kalman filter by the ADC controller,

designed within the FPGA. The ADC controller

directs the ADC when to take a sample of the analog

input , and sends the digital value to the input of

kalman filter . Like the ADC, the DAC connects to

the kalman filter using a FPGA design, the DAC

controller. This module sends the digital output of the

kalman filter to the DAC, and then instructs it when

to output that value as an analog signal, this

completes the system.

The responsibility of this kalman filter

design is to reject higher frequencies signals from

passing through the system, but allow lower

frequencies to pass unaffected.

3.1.1 kalman filter

The kalman filter is an important part of this project.

The purpose of kalman filter is to use measurements

observed over time, which contains random

variations of noise, and produce a value that is

Implementation of Kalman Filter using Vhdl 73

accurate to the true values of the measurements. It

does this by predicting a value, estimating the

uncertainty of the predicted value, and computing a

weighted average of the predicted value and

calculated value. The kalman filter first predicts the

next value as well as the error covariance. When the

next value comes into the filter, the kalman gain is

computed, the estimate is updated with observed

value, and the error covariance is updated. This helps

to get rid of the noise within the signal.

A kalman filter is different from other filters

such as low pass or high pass filters. These filters are

linear, time invariant systems which are designed

with frequency response in mind. These filters tend to

be single input single output systems. In this the

kalman filter we are designing could be replaced by

one of these filters because it has all the characeristics

just described. However in this we show how an

FPGA based kalman filter could be beneficial for the

locator device. The kalman filter in the locator device

is designed with the characteristics of a normal

kalman filter. These characteristics involve being a

multiple input, multiple output system. Also they are

linear, time variant systems which are designed with

a mean square error approach.

The way in which Locator device uses its

kalman filter is by using multiple input signals. Each

of these signals by themselves could be ued to

determine location. However the system cannot rely

on any one source because if different scenarios, each

of these input signals could be contaminated by

different amounts of noise. So, kalman filter takes the

information from all these signals, uses it to reduce

the noise and produces its best estimate for the

location of the first responders. A kalman filter is

used to read the transmitter and get rid of the noise

and return back the exact location of a particular

person.

3. 2.2 Designing the fpga based kalman filter

Since the design was quite complicated, it

was determined that the best approach was to break

the design down into small pieces.

3. 2.2.1 Matrix multiplications

The first obstacles presented were the three

matrix multiplications. There were certain instances

where 3x3 matrix multiplications are required. Some

of the multipliers are equipped with by single

multiplications. So there is not enough multipliers are

available in the FPGA. We came to the conclusion

that we had to multiplex what values are being

multiplied at certain times, so that each multiplier

could be used more than once. The entire 3x3 matrix

remains the same for these calculations but the row of

3 is what is getting multiplexed for another 3 x 3

matrix. A module was created to perform the 9

multiplications between a 1x3 matrix and a 3x3

matrix. In order to perform a matrix multiplication

with two 3x3 matrices, this module needs to be used

3 times. For the multiply function we have used the

logic of complementing the negative value then we

get the 32 bit product of two 16bit operand. This

multiplier function is used for the matrix

multiplication.

prod1 <= multiply (row1, col11) + multiply

(row2, col21) + multiply (row3, col31);

prod2 <= multiply (row1, col12) + multiply

(row2, col22) + multiply (row3, col32);

prod3<=multiply (row1, col13) + multiply

(row2, col23) + multiply (row3, col33);

Fig 6: Multiplexing for Count 3-8

3. 2.2.2 Division

Another task is we dividing two values

within the kalman filter. Performing division is

adifficult task because it taks a lot VHDL code and

uses a lot of resources. It was decided that the best

approach was to use the built in core generator in the

Xilinx software that the VHDL design was being

written in. The core generator can create a number of

different functions and it uses an efficient amount of

resources. Once we created this module, weworked to

include it within our Kalman filter design. The

schematic of the function can be seen below:

74 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014

Fig 7: Divide Function

Two 16 bit signed values are entered into the

function. A 16 signed bit quotient is output, as well as

a remainder. This module is very useful within our

design, and was quite simple to implement.

3. 2.2.3 Using registers to store previous values

The use of registers was very important to

the design. Since the design uses previous values

needed to be stored in registers. Also, the values in

these registers have to be loaded into the design along

with the input. Without using registers and loading

values in on each clock value, the design would cause

a continuous loop. This happens because the output

changes, the current calculations would change

causing the output to change again, and this would

keep happening. So, once we knew we neede to use

registers to store previous values, a block diagram

was first to better understand how this could be

done.The block diagram proved to be very helpful. A

simple project was first created to make sure the

process worked before it was added to the overall

project. This turned out to be a success and we could

clearly see values being stored in registers, and then

loaded from registers. The block diagram for using

the registers can be seen below. On the rising edge of

the clock, or for testing purposes, when a button is

pressed, flip flop load the previous output as well as

the current input. After going through the next state

logic, the output values are stored in the registers and

remain their until the next load.

Fig 8: Main Block Diagram

3.2.2.4 Using the kalman filter with real time

signals

The goal of this project is to be able to send

an analog signal into the project, and output the

resulting analog signal . To successfully do this, it is

necessary to use an analog to digital converter (ADC)

and digital to analog converter (DAC) to stream data

into and out of the system using analog signals.

-- Control for temp

process(clk)

begin

if rising_edge(clk) then

if count = 0 then

if load = '1' then

temp <= data;

elsif currentstate = Send then

temp <= temp(14 downto 0) & '0';

end if;

end if;

end if;

end process;

-- Next State Logic

process(currentstate, load, regcount)

begin

case currentstate is

when Idle =>

if load = '1' then

nextstate <= Low;

else

nextstate <= Idle;

Implementation of Kalman Filter using Vhdl 75

end if;

when Low =>

nextstate <= Send;

when Send =>

if regcount = 15 then

nextstate <= High;

else

nextstate <= Send;

end if;

when High =>

nextstate <= Idle;

end case;

end process;

Fig 9: State Machine of DAC

Fig 10: State Machine of ADC

--Next state logic

process(currentstate, load, regcount)

begin

case currentstate is

when Idle =>

if load = '1' then

nextstate <= CSLow;

else

nextstate <= Idle;

end if;

when CSLow =>

nextstate <= Receive;

when Receive =>

if regcount = 15 then

nextstate <= CSHigh;

else

nextstate <= Receive;

end if;

when CSHigh =>

nextstate <= Idle;

end case;

end process;

-- Control for temp

process(clk)

begin

if rising_edge(clk) then

if nextstate = Receive then

if count = 0 then

temp <= temp(14 downto 0) & Sdata;

elsif count = 3 then

temp(0) <= Sdata;

end if;

end if;

end if;

end process;

-- Load 12 data bits to data

process(clk)

begin

if rising_edge(clk) then

if currentstate = CSHigh then

data <= temp(11 downto 0);

end if;

end if;

end process;

CS is what controls when a sample is taken.

CS is active low and tells the ADC to create a 16 bit

value out of the analog sample. Like the DAC, we

created a load signal to tell the ADC controller that an

input is desired. When load is high, CS goes low on

the rising edge of sclk. This allows for the setup time

76 International Journal of Advance Research and Innovation, Vol 2(2), Apr-Jun 2014

to be achieved before the first value is input

on the falling edge of the clock. Temp shifts in one

bit at a

time on the rising edge of sclk and after 15 cycles,

temp is ready to output a 16 bit value, and CS is sent

high. The values are available on the falling

edge of sclk, but taking them on the rising edge

assures that they are valid. The only bit that is taken

on the falling edge is the first bit, and this is because

it is sent along with the second bit on the first falling

edge. The values of Sdata were shifted into temp.

The first step to this process is using a DAC

to output the values of the Kalman Filter as an analog

signal. The first thing we had to do was to choose

which DAC to work with. The DAC is of 12-bit

instead of a 16-bit DAC means that there is a loss of

precision, but since only the least significant bits are

lost, the difference in precision does not affect the

performance of the kalman filter.

Fig: 10. State Machine of ADC to DAC

4.0 Conclusion

In conclusion, we have created a successful

Kalman Filter, which interfaces with an ADC and

DAC to form a complete system that streams analog

data in and out. We also created an ADC controller

and DAC controller so that the Kalman Filter, ADC

and DAC could be integrated together and used for

testing purposes.A complete system like the one we

have built can be altered, and added onto, to perform

the tasks of the Kalman Filter in the PPL(Precision

Personal Locator) system, and can be included within

the implementation of the actual system to process

the data in real time. What all of this means is that

another group can learn from everything that has been

documented here to enhance our design to support a

more complicated version of a Kalman Filter.

Implementation of Kalman Filter using Vhdl 77

References

[1] F.A. Faruqi and R.C. Davis, Kalman Filter

design for target tracking, IEEE Trans.

Aerosp. Electron. Syst., AES-16, 500-508,

1980

[2] Y. Bar-Shalom and X. R. Lin, Estimation

and tracking: principles, techniques, and

software, Artech House, 1993, 417-483

[3] S. Y. Kung and J. N. Hwang, Systolic array

designs for Kalman Filtering, IEE Trans.,

Signal Processing, 171-182, 1991

[4] L. P. Maguire and G. W. Irwin, Transputer

implementation of Kalman Filter, IEEE

Proc., 138, 355-362, 1991.

[5] M. Munu, I. Harrison, D. Wilkin, and M. S.

Woolfson, Comparison of adaptive target-

tracking algorithms for phased-array radar,

IEE Proc. F. Commun, Radar and Signal,

139, 336-342.

[6] D. P. Atherton and H. J. Lin, Parallel

implementation of IMM tracking algorithm

using transputers, IEE Proc.-Radar, Sonar

Navig., 141, 325-332, 1994

[7] J. M. Jover, T. Kailath, A parallel

architecture for Kalman Filter measurement

update and parameter estimation,

Automatica, 22, 32-57, 1986

[8] Song Ci. Sharif, H (2005) Performance

Comparison of Kalman Filter based

approaches for energy efficiency in wireless

sensor networks, IEEE conf.: on Computer

Systems and Applications.

