
International Journal of Advance Research and Innovation

Vol. 3(1), Jan-Mar 2015, pp. 52-56

Doi: 10.51976/ijari.311509

www.gla.ac.in/journals/ijari

© 2015 IJARI, GLA University

Article Info

Received: 04 Fab 2015 | Revised Submission: 20 Feb 2015 | Accepted: 28 Feb 2015 | Available Online: 15 Mar 2015

*Corresponding Author: Department of Computer Science, J. J. College of Engineering and Technology, Trichy, Tamil

Nadu, India (E-mail: rec.natarajan@gmail.com;)

**Department of Computer Science, J. J. College of Engineering and Technology, Trichy, Tamil Nadu, India

Enhanced K-Means++ Clustering for Big Data with Mapreduce

B. Natarajan* and P. Chellammal**

ABSTRACT

Clustering big data using data mining algorithms is a modern approach, used in various science and medical

fields. k-means clustering algorithm is a good approach for clustering, but choosing initial centers and provides

less accuracy guarantees. The enhanced k-means approach called 𝑘-means++ chooses one center uniformly at

random provides better functionality, but fails to handle data of larger volume in distributed environment. The

mapreduce 𝑘-means++ method handles k-means++ algorithm by enhancing it in mapper and reducer phases,

also reduces the no of iterations required to obtain 𝑘 centers. in which the 𝑘-means++ initialization algorithm

is executed in the mapper phase and the weighted 𝑘-means++ initialization algorithm is run in the reducer

phase. it reduces huge amount of communication and i/o costs. the proposed mapreduce 𝑘-means++ method

obtains (𝛼2
) approximation to the optimal solution of 𝑘-means.

Keywords: VANET; MANET; ZRP; LAR; IDM; Vanet Mobi Sim; ns2.

1.0 Introduction

Clustering is one of the most fundamental

tasks in exploratory data analysis that groups similar

points in an unsupervised fashion, applied in many

areas of computer science and related fields, such as

data mining, pattern recognition and machine

learning [1]. K-means is widely known one of the

most popular clustering algorithms owing to its

simplicity and efficiency. However, k-means is

iterative by nature. At each iteration of a k-means

process, new centroid must be computed based on the

previous one.

Distributing k-means algorithm needs much

iteration to converge is costly as a global state must

be reconstructed and propagated to all nodes. [2]. A

hierarchical initialization approach is to treat the

clustering problem as a weighted clustering problem

which finds better initial cluster centers based on the

hierarchical approach also requires less iteration time

compared with existing approaches and has better

performance in terms of convergence speed and

ability to reduce the impact of noises. [3].

The K-means++ [3] algorithm which consists

of the initialization step and K-means step. In the

initialization step, except that the first center is

chosen uniformly random, each subsequent center is

orderly chosen according to its squared distance from

the closet center already chosen.

More importantly, K-means++ has a provable

approximation guarantee to the optimal solution.

However, fc-means++ becomes inefficient as the size

of data increases (like Terabyte or Petabyte) means

that there are a large number of clusters, leading to a

huge number of distance computations. So, fc-

means++ initialization becomes inefficient. Even

though scalable fc-means++ presented in [4] chooses

more than one centers in each pass and is proven as a

good approximation of the original K-means, it still

needs too many passes in practice, which incurs huge

communication and I/O costs.

Map Reduce [7] is considered to be an

efficient tool in situations where the amount of data is

prohibitively large.

However MapReduce-based systems are still

inefficient, to generate k centers, the MapReduce

implementation of k-means++ initialization needs k

rounds and 2K MapReduce jobs. In addition, a large

number of data need to be transferred between

multiple machines.

MapReduce K-means++ initialization

algorithm in very large data situation and develops it

with MapReduce. The major research challenges

addressed are: (1) how to efficiently implement the

53 International Journal of Advance Research and Innovation, Vol 3(1), Jan-Mar 2015

K-means++ initialization algorithm with

MapReduce. The main idea behind this method is

that, instead of using 2K MapReduce jobs to choose k

centers, this method uses only one MapReduce job.

Both Mapper phase and Reducer phase in our

method execute the K-means++ initialization

algorithm. The Mapper phase runs the standard K-

means++ initialization algorithm and the weighted K-

means++ initialization algorithm is executed on the

Reducer phase. (2) Although K-means++ is (a)

approximation to the optimal fe-means, this method is

(a
2
) approximation to the optimal of fe-means. The

major contributions of this paper are: An efficient

MapReduce implementation of fe-means++

initialization which uses only one MapReduce job to

choose fe centers, avoiding multiple rounds of

MapReduce jobs on many machines and thus

reducing the communication and I/O costs

significantly. To reduce the expensive distance

computation of the proposed method, this method

also uses a pruning strategy can dramatically reduce

the redundant distance computation, indicate that our

MapReduce fe-means++ algorithm is much efficient

and has a good approximation.

2.0 Related Work

This section briefly describes the use of Map-

Reduce as well as distributed and parallel frameworks

dedicated to grid and cloud computations such as

Hadoop.

2.1 Map-reduce

The Map-Reduce framework is originally by

Google, and it is a programming model for

processing extremely large datasets. It exploits data

independence to do automatic distributed parallelism.

The developer has tasked with implementing the Map

and the Reduce functions. The input data is

distributed in blocks to the participating machines

using the distributed Google file system GFS [6].

When a job is launched, the system automatically

spawns as many Map functions as there are data

blocks to process. Each Mapper reads the data

iteratively as a key/value pair record, processes it and,

if necessary, outputs key/value pair bound for a

Reduce function. All records with the same key go to

the same Reduce task. The framework thus includes a

copy-merge-sort data shuffle step, where data from

several mappers gets directed to specific reducers

depending on theirkey. Once enough data is locally

available to reducers, they process the records and

produce the final output. The Map-Reduce run-time

environment transparently handles the partitioning of

the input data, schedules the execution of tasks across

the machines and manages the communications

between processing nodes when sending/receiving

the records to process. The run-time environment also

deals with node failures and restarts aborted tasks on

nodes, possibly on replicated data in case of

unavailability.

The frame work uses as little network

bandwidth as possible by processing data where it

resides or at the nearest available node, paying

attention to the network topology and minimizing

reading over machine-rack boundaries.

2. Hadoop and HDFS

The Map-Reduce programming model has

been implemented by the open-source community

through the Hadoop project. Maintained by the

Apache Foundation and supported by Yahoo!,

Hadoop has rapidly gained popularity in the area of

distributed data-intensive computing. The core of

Hadoop consists of the Map-Reduce implementation

and the Hadoop Distributed File System (HDFS).

HDFS was built with the purpose of providing

storage for huge files with streaming data access

patterns, while running on clusters of commodity

hardware. HDFS implements concepts commonly

used by distributed file systems: data is organized

into files and directories, a file is split into fixed size

blocks that are distributed across the cluster nodes.

The blocks are called chunks and are usually

of 64 MB in size (this parameter specifying the chunk

size is configurable). The architecture of HDFS

consists of several data nodes storing the data chunks

and a centralized name node responsible for keeping

the file metadata and the chunk location. HDFS

handles failures through chunk-level replication

(default 3 replicas). When distributing the replicas to

the data nodes, HDFS employs a rack-aware policy:

the first replica is stored on a data node in the same

rack, and the second replica is shipped to a data node

belonging to a different rack (randomly chosen).

2.3 Scalable k-means++

 In [4], Bahman Bahmani et al., have

compared k-means, k-means++ proper initialization

methods. A proper initialization of k-means is crucial

Enhanced K-Means++ Clustering for Big Data with Mapreduce 54

for obtaining a good final solution. A major downside

of the k-means++ is its inherent sequential nature,

which limits its applicability to massive data: it takes

passes over the data to find a good initial set of

centers. Scalable k-means++ show how to drastically

reduce the number of passes needed to obtain, in

parallel, a good initialization.

This is unlike prevailing efforts on

parallelizing k-means that have mostly focused on the

post-initialization phases of k-means. Scalable k-

means++ obtains a nearly optimal solution after a

logarithmic number of passes, and then show that in

practice a constant number of passes suffices.

The main idea is that instead of sampling a

single point in each pass of the k-means++ algorithm,

sample O(k) points in each round and repeat the

process for approximately 0(log n) rounds. At the end

of the algorithm they have left with 0(k log n) points

that form a solution that is within a constant factor

away from the optimum.

Then recluster these 0(k log n) points into k

initial centers for the Lloyd's [8] iteration.

However, the analysis of the algorithm turns

out to be highly non-trivial, requiring new insights,

and is quite different from the analysis of k-means++.

This algorithm needs too many MapReduce jobs.

2.4 Hierarchical initialization approach for k-

means clustering

In [3], Lu et al., have implemented a

hierarchical initialization approach to the K-Means

clustering problem. This method treats the clustering

problem as a weighted clustering problem so as to

find better initial cluster centers based on the

hierarchical approach also it requires less Iteration

time compared with existing approaches and has

better performance in terms of convergence speed

and ability to reduce the impact of noises.

The core of this method is as follows:

averaging is used as a sampling method so as to

reduce data hierarchically, then clustering is

performed on the reduced data, meanwhile, the

clustering problem is treated as a weighted clustering

one. Based on this idea, better initial cluster centers

can be found, and the efficiency can be improved by

hierarchical clustering due to clustering on the

reduced data.

The only requirement for this method is that

the Euclidian distance is used as the distance metric

which is reasonable for most of applications. This

method can provide better initial cluster centers and

generally faster than performing clustering using the

standard K-Means algorithm with random

initialization.

The reason for this is that better initial cluster

centers are found which speed up the final clustering

procedure, and reduce the number of iterations. This

algorithm is also suitable for clustering of high

dimensional data and can provide cluster centers with

different accuracy requirements. Also, this Also, this

algorithm has the ability to reduce the impact of

noises.

2.5 K-means++: the advantages of careful seeding

In [3], David Arthur and Sergei Vassilvitskii

solved the difficulties present in the k-means like

proper initialization and no approximation

guarantees. The k-means++ algorithm which works

as follows, the k-means algorithm is a simple and fast

algorithm for this problem. 1. Arbitrarily choose an

initial k centers

C= {cl,c2, ,ck}.

2. For each i {1, . . . , k}, set the cluster Q to be

the set of points in X that are closer to Cjthan

they are to Cj for all j * i.

3. For each i = {1 . . . k}, set q to be the center

of mass of all points in

4. Repeat Steps 2 and 3 until C no longer

changes.

It is standard practice to choose the initial

centers uniformly at random from X. For Step 2, ties

may be broken arbitrarily, as long as the method is

consistent. k-mems++ algorithm which consists of

the initialization step and k-means step.

In the initialization step, except that the first

center is chosen randomly, each subsequent center is

orderly chosen according to its squared distance from

the closet center already chosen.

More importantly, k-means++ has a provable

approximation guarantee to the optimal solution.

However, K-means++ becomes inefficient as

the size of data increases.

Large data (like Terabyte or Petabyte) means

that there are a large number of clusters, leading to a

huge number of distance computations. So, k-

mems++ initialization becomes inefficient and even

impossible to process large data.

55 International Journal of Advance Research and Innovation, Vol 3(1), Jan-Mar 2015

2.6 Parallel k-means clustering based on

mapreduce

In [7], Weizhong Zhao et al., have discussed

the enlarging volumes of information emerging by

the progress of technology, makes clustering of very

large scale of data a challenging task.

In order to deal with the problem they have

proposed a parallel K-means clustering algorithm

based on MapReduce, which is a simple yet powerful

parallel programming technique, K-means algorithm

in MapReduce framework is implemented by Hadoop

to make the clustering method applicable to large

scale data.

By applying proper <key, value>pairs, their

proposed algorithm can be parallel executed

effectively. Parallel K-Means algorithm needs one

kind of MapReduce job.

The map function performs the procedure of

assigning each sample to the closest center while the

reduce function performs the procedure of updating

the new centers. In order to decrease the cost of

network communication, a combiner function is

developed to deal with partial combination of the

intermediate values with the same key within the

same map task.

2.7 DisCo: distributed co-clustering with map-

reduce.

In [5], Spiros Papadimitriou et al., propose the

Distributed Co-clustering (DisCo) framework, which

introduces practical approaches for distributed data

preprocessing, and co-clustering.

They have developed DisCousing Hadoop, an

open source Map-Reduce implementation. DisCocan

scale well and efficiently process and analyze

extremely large datasets (up to several hundreds of

gigabytes) on commodity hardware.

Comprehensive Distributed Co-clustering

(DisCo) solution from the raw data to the end

clusters.

DisCo using Hadoop an open source package

which includes a freely available implementation of

MapReduce and has been widely embraced by both

commercial and academic worlds.

DisCo is a scalable framework underwhich

various co-clustering algorithms can be implemented.

Since both data pre-processing (i.e., graph extraction)

and co-clustering components need efficient

sequential scans over the entire data set, only need to

use thecore Hadoop components.

Fig 1: Overview of the Map-Reduce execution

Framework

2.8 Least squares quantization in pulse code

modulation

In [8], Lloyd defines, InK-means initially

chooses k centers randomly. For each input point, the

nearest center is identified. Points that choose the

same center belong to a cluster. Now new centers are

calculated for the clusters. Each input point identifies

its nearest center, and so on. This process is repeated

until no changes occur. The process of identifying the

nearest center for each input point and recomputing

centers is referred to as iteration. The number of

iterations taken by Lloyd's algorithm is unknown.

This algorithm may converge to a local minimum

with an arbitrarily bad distortion with respect to the

optimal solution

2.9 Fast k-means algorithms with constant

approximation

In [10], Mingjun Song et al., have been

proposed three constant approximation algorithms

forK-means clustering.

The first algorithm runs in time nd),

where k is the number of clusters, n is the size of

input points, d is dimension of attributes. The second

algorithm runs in time O(k
3
n

2
 log n). This is the first

algorithm for K-means clustering that runs in time

polynomial in n, k and d. The run time of the third

algorithm O(k
5
 log

3
kd) is independent of n. Though

an algorithm whose run time is independent of n is

known for the K-median problem, this is the first such

algorithm for the K-means problem.

3.0 Conclusion

In this paper the important problem of

clustering and studies K-means++ algorithm in a very

Enhanced K-Means++ Clustering for Big Data with Mapreduce 56

large data situations. It leads to develop K-means++

initialization with MapReduce efficiently and propose

the MapReduce k-means++ algorithm. The

MapReduce initialization algorithm uses only one

MapReduce job to choose k centers.

The standard k-means++ initialization and

weighted k-means++ initialization are applied to the

Mapper phase and Reducer phase, respectively. For

the reduction of MapReduce jobs, our algorithm

saves a lot of communication and I/O cost.

Furthermore, the proposed algorithm provides an(a2)

approximation to the optimal solution of K-means

References

[1] E. Chandra, V. P. Anuradha, A survery on

clustering algorithms for data in spatial

database management systems," Computer

Applications, 24(9), 2011, 19-26

[2] J. F. Lu, J. B. Tang, Z. M. Tang, J. Y. Yang,

Hierarchicalinitialization approach for k-means

clustering, Pattern Recogn. Lett., 6, 2008, 787-

795

[3] D. Arthur, S. Vassilvitskii, K-means++: The

advantages ofcareful seeding, in Proceedings

of the Eighteenth Annual ACMSIAM

Symposium on Discrete Algorithms, 2007,

1027-1035

[4] [4] B. Bahmani, B. Moseley, A. Vattani, R.

Kumar, and S. Vassilvitskii, "Scalable k-

means++, PVLDB, 5(7), 2012, 622-633

[5] S. Papadimitriou, J. Sun, Disco: Distributed

co-clusteringwith map-reduce: A case study

towards petabyte-scale end-to-endmining, in

Proceedings of the 2008 Eighth IEEE

International Conference on Data Mining,

2008, 512-521

[6] A. Ene, S. Im, B. Moseley, Fast clustering

using mapreduce, in Proceedings of the 17th

ACM SIGKDD

[7] International Conference on Knowledge

Discovery and Data Mining, 2011, 681-689

[8] R. L. Ferreira Cordeiro, C. Traina, Junior, A. J.

Machado Traina, J. L'opez, U. Kang, C.

Faloutsos, Clustering very large

Multidimensional datasets with mapreduce, in

Proceedings of the 17
th

ACM SIGKDD

International Conference on Knowledge

Discovery and Data Mining, 2011, 690-698

[9] S. Lloyd, Least squares quantization in pcm,

Information Theory, IEEE Transactions on,

28(2), 1982, 129-137

[10] T. Kanungo, D. M. Mount, N. S. Netanyahu,

C. D. Piatko, R. Silverman, A. Y. Wu, A local

search approximation algorithm for k-means

clustering, Comput. Geom. Theory Appl, 28(2-

3), 2004, 89-112

[11] M. Song, S. Rajasekaran, Fast k-means

algorithms with constant approximation, in

Algorithms and Computation, 2005, 1029-

1038

