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ABSTRACT 

 

Clustering big data using data mining algorithms is a modern approach, used in various science and medical 

fields. k-means clustering algorithm is a good approach for clustering, but choosing initial centers and provides 

less accuracy guarantees. The enhanced k-means approach called 𝑘-means++ chooses one center uniformly at 

random provides better functionality, but fails to handle data of larger volume in distributed environment. The 

mapreduce 𝑘-means++ method handles k-means++ algorithm by enhancing it in mapper and reducer phases, 

also reduces the no of iterations required to obtain 𝑘 centers. in which the 𝑘-means++ initialization algorithm 

is executed in the mapper phase and the weighted 𝑘-means++ initialization algorithm is run in the reducer 

phase. it reduces huge amount of communication and i/o costs. the proposed mapreduce 𝑘-means++ method 

obtains (𝛼2
) approximation to the optimal solution of 𝑘-means. 
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1.0 Introduction 

 

Clustering is one of the most fundamental 

tasks in exploratory data analysis that groups similar 

points in an unsupervised fashion, applied in many 

areas of computer science and related fields, such as 

data mining, pattern recognition and machine 

learning [1]. K-means is widely known one of the 

most popular clustering algorithms owing to its 

simplicity and efficiency. However, k-means is 

iterative by nature. At each iteration of a k-means 

process, new centroid must be computed based on the 

previous one. 

Distributing k-means algorithm needs much 

iteration to converge is costly as a global state must 

be reconstructed and propagated to all nodes. [2]. A 

hierarchical initialization approach is to treat the 

clustering problem as a weighted clustering problem 

which finds better initial cluster centers based on the 

hierarchical approach also requires less iteration time 

compared with existing approaches and has better 

performance in terms of convergence speed and 

ability to reduce the impact of noises. [3]. 

The K-means++ [3] algorithm which consists 

of the initialization step and K-means step. In the 

initialization step, except that the first center is 

chosen uniformly random, each subsequent center is 

orderly chosen according to its squared distance from 

the closet center already chosen. 

More importantly, K-means++ has a provable 

approximation guarantee to the optimal solution. 

However, fc-means++ becomes inefficient as the size 

of data increases (like Terabyte or Petabyte) means 

that there are a large number of clusters, leading to a 

huge number of distance computations. So, fc-

means++ initialization becomes inefficient. Even 

though scalable fc-means++ presented in [4] chooses 

more than one centers in each pass and is proven as a 

good approximation of the original K-means, it still 

needs too many passes in practice, which incurs huge 

communication and I/O costs. 

Map Reduce [7] is considered to be an 

efficient tool in situations where the amount of data is 

prohibitively large. 

However MapReduce-based systems are still 

inefficient, to generate k centers, the MapReduce 

implementation of k-means++ initialization needs k 

rounds and 2K MapReduce jobs. In addition, a large 

number of data need to be transferred between 

multiple machines. 

MapReduce K-means++ initialization 

algorithm in very large data situation and develops it 

with MapReduce. The major research challenges 

addressed are: (1) how to efficiently implement the 
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K-means++ initialization algorithm with 

MapReduce. The main idea behind this method is 

that, instead of using 2K MapReduce jobs to choose k 

centers, this method uses only one MapReduce job. 

Both Mapper phase and Reducer phase in our 

method execute the K-means++ initialization 

algorithm. The Mapper phase runs the standard K-

means++ initialization algorithm and the weighted K-

means++ initialization algorithm is executed on the 

Reducer phase. (2) Although K-means++ is (a) 

approximation to the optimal fe-means, this method is 

(a
2
) approximation to the optimal of fe-means. The 

major contributions of this paper are: An efficient 

MapReduce implementation of fe-means++ 

initialization which uses only one MapReduce job to 

choose fe centers, avoiding multiple rounds of 

MapReduce jobs on many machines and thus 

reducing the communication and I/O costs 

significantly. To reduce the expensive distance 

computation of the proposed method, this method 

also uses a pruning strategy can dramatically reduce 

the redundant distance computation, indicate that our 

MapReduce fe-means++ algorithm is much efficient 

and has a good approximation. 

 

2.0 Related Work 

 

This section briefly describes the use of Map-

Reduce as well as distributed and parallel frameworks 

dedicated to grid and cloud computations such as 

Hadoop. 

 

2.1 Map-reduce 

The Map-Reduce framework is originally by 

Google, and it is a programming model for 

processing extremely large datasets. It exploits data 

independence to do automatic distributed parallelism. 

The developer has tasked with implementing the Map 

and the Reduce functions. The input data is 

distributed in blocks to the participating machines 

using the distributed Google file system GFS [6]. 

When a job is launched, the system automatically 

spawns as many Map functions as there are data 

blocks to process. Each Mapper reads the data 

iteratively as a key/value pair record, processes it and, 

if necessary, outputs key/value pair bound for a 

Reduce function. All records with the same key go to 

the same Reduce task. The framework thus includes a 

copy-merge-sort data shuffle step, where data from 

several mappers gets directed to specific reducers 

depending on theirkey. Once enough data is locally 

available to reducers, they process the records and 

produce the final output. The Map-Reduce run-time 

environment transparently handles the partitioning of 

the input data, schedules the execution of tasks across 

the machines and manages the communications 

between processing nodes when sending/receiving 

the records to process. The run-time environment also 

deals with node failures and restarts aborted tasks on 

nodes, possibly on replicated data in case of 

unavailability. 

The frame work uses as little network 

bandwidth as possible by processing data where it 

resides or at the nearest available node, paying 

attention to the network topology and minimizing 

reading over machine-rack boundaries. 

 

2. Hadoop and HDFS 

The Map-Reduce programming model has 

been implemented by the open-source community 

through the Hadoop project. Maintained by the 

Apache Foundation and supported by Yahoo!, 

Hadoop has rapidly gained popularity in the area of 

distributed data-intensive computing. The core of 

Hadoop consists of the Map-Reduce implementation 

and the Hadoop Distributed File System (HDFS). 

HDFS was built with the purpose of providing 

storage for huge files with streaming data access 

patterns, while running on clusters of commodity 

hardware. HDFS implements concepts commonly 

used by distributed file systems: data is organized 

into files and directories, a file is split into fixed size 

blocks that are distributed across the cluster nodes. 

The blocks are called chunks and are usually 

of 64 MB in size (this parameter specifying the chunk 

size is configurable). The architecture of HDFS 

consists of several data nodes storing the data chunks 

and a centralized name node responsible for keeping 

the file metadata and the chunk location. HDFS 

handles failures through chunk-level replication 

(default 3 replicas). When distributing the replicas to 

the data nodes, HDFS employs a rack-aware policy: 

the first replica is stored on a data node in the same 

rack, and the second replica is shipped to a data node 

belonging to a different rack (randomly chosen). 

 

2.3 Scalable k-means++ 

 In [4], Bahman Bahmani et al., have 

compared k-means, k-means++ proper initialization 

methods. A proper initialization of k-means is crucial 
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for obtaining a good final solution. A major downside 

of the k-means++ is its inherent sequential nature, 

which limits its applicability to massive data: it takes 

passes over the data to find a good initial set of 

centers. Scalable k-means++ show how to drastically 

reduce the number of passes needed to obtain, in 

parallel, a good initialization. 

This is unlike prevailing efforts on 

parallelizing k-means that have mostly focused on the 

post-initialization phases of k-means. Scalable k-

means++ obtains a nearly optimal solution after a 

logarithmic number of passes, and then show that in 

practice a constant number of passes suffices. 

The main idea is that instead of sampling a 

single point in each pass of the k-means++ algorithm, 

sample O(k) points in each round and repeat the 

process for approximately 0(log n) rounds. At the end 

of the algorithm they have left with 0(k log n) points 

that form a solution that is within a constant factor 

away from the optimum. 

Then recluster these 0(k log n) points into k 

initial centers for the Lloyd's [8] iteration. 

However, the analysis of the algorithm turns 

out to be highly non-trivial, requiring new insights, 

and is quite different from the analysis of k-means++. 

This algorithm needs too many MapReduce jobs. 

 

2.4 Hierarchical initialization approach for k-

means clustering 

In [3], Lu et al., have implemented a 

hierarchical initialization approach to the K-Means 

clustering problem. This method treats the clustering 

problem as a weighted clustering problem so as to 

find better initial cluster centers based on the 

hierarchical approach also it requires less Iteration 

time compared with existing approaches and has 

better performance in terms of convergence speed 

and ability to reduce the impact of noises. 

The core of this method is as follows: 

averaging is used as a sampling method so as to 

reduce data hierarchically, then clustering is 

performed on the reduced data, meanwhile, the 

clustering problem is treated as a weighted clustering 

one. Based on this idea, better initial cluster centers 

can be found, and the efficiency can be improved by 

hierarchical clustering due to clustering on the 

reduced data. 

The only requirement for this method is that 

the Euclidian distance is used as the distance metric 

which is reasonable for most of applications. This 

method can provide better initial cluster centers and 

generally faster than performing clustering using the 

standard K-Means algorithm with random 

initialization. 

The reason for this is that better initial cluster 

centers are found which speed up the final clustering 

procedure, and reduce the number of iterations. This 

algorithm is also suitable for clustering of high 

dimensional data and can provide cluster centers with 

different accuracy requirements. Also, this Also, this 

algorithm has the ability to reduce the impact of 

noises. 

 

2.5 K-means++: the advantages of careful seeding 

In [3], David Arthur and Sergei Vassilvitskii 

solved the difficulties present in the k-means like 

proper initialization and no approximation 

guarantees. The k-means++ algorithm which works 

as follows, the k-means algorithm is a simple and fast 

algorithm for this problem. 1. Arbitrarily choose an 

initial k centers 

C= {cl,c2,   ,ck}. 

2. For each i {1, . . . , k}, set the cluster Q to be 

the set of points in X that are closer to Cjthan 

they are to Cj for all j * i. 

3. For each i = {1 . . . k}, set q to be the center 

of mass of all points in 

 

4. Repeat Steps 2 and 3 until C no longer 

changes. 

 

It is standard practice to choose the initial 

centers uniformly at random from X. For Step 2, ties 

may be broken arbitrarily, as long as the method is 

consistent. k-mems++ algorithm which consists of 

the initialization step and k-means step. 

In the initialization step, except that the first 

center is chosen randomly, each subsequent center is 

orderly chosen according to its squared distance from 

the closet center already chosen. 

More importantly, k-means++ has a provable 

approximation guarantee to the optimal solution. 

However, K-means++ becomes inefficient as 

the size of data increases. 

Large data (like Terabyte or Petabyte) means 

that there are a large number of clusters, leading to a 

huge number of distance computations. So, k-

mems++ initialization becomes inefficient and even 

impossible to process large data. 
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2.6 Parallel k-means clustering based on 

mapreduce 

In [7], Weizhong Zhao et al., have discussed 

the enlarging volumes of information emerging by 

the progress of technology, makes clustering of very 

large scale of data a challenging task. 

In order to deal with the problem they have 

proposed a parallel K-means clustering algorithm 

based on MapReduce, which is a simple yet powerful 

parallel programming technique, K-means algorithm 

in MapReduce framework is implemented by Hadoop 

to make the clustering method applicable to large 

scale data. 

By applying proper <key, value>pairs, their 

proposed algorithm can be parallel executed 

effectively. Parallel K-Means algorithm needs one 

kind of MapReduce job. 

The map function performs the procedure of 

assigning each sample to the closest center while the 

reduce function performs the procedure of updating 

the new centers. In order to decrease the cost of 

network communication, a combiner function is 

developed to deal with partial combination of the 

intermediate values with the same key within the 

same map task. 

 

2.7 DisCo: distributed co-clustering with map-

reduce. 

In [5], Spiros Papadimitriou et al., propose the 

Distributed Co-clustering (DisCo) framework, which 

introduces practical approaches for distributed data 

preprocessing, and co-clustering. 

They have developed DisCousing Hadoop, an 

open source Map-Reduce implementation. DisCocan 

scale well and efficiently process and analyze 

extremely large datasets (up to several hundreds of 

gigabytes) on commodity hardware. 

Comprehensive Distributed Co-clustering 

(DisCo) solution from the raw data to the end 

clusters. 

DisCo using Hadoop an open source package 

which includes a freely available implementation of 

MapReduce and has been widely embraced by both 

commercial and academic worlds. 

DisCo is a scalable framework underwhich 

various co-clustering algorithms can be implemented. 

Since both data pre-processing (i.e., graph extraction) 

and co-clustering components need efficient 

sequential scans over the entire data set, only need to 

use thecore Hadoop components. 

 

Fig 1: Overview of the Map-Reduce execution 

Framework 

 
 

2.8 Least squares quantization in pulse code 

modulation 

In [8], Lloyd defines, InK-means initially 

chooses k centers randomly. For each input point, the 

nearest center is identified. Points that choose the 

same center belong to a cluster. Now new centers are 

calculated for the clusters. Each input point identifies 

its nearest center, and so on. This process is repeated 

until no changes occur. The process of identifying the 

nearest center for each input point and recomputing 

centers is referred to as iteration. The number of 

iterations taken by Lloyd's algorithm is unknown. 

This algorithm may converge to a local minimum 

with an arbitrarily bad distortion with respect to the 

optimal solution 

 

2.9 Fast k-means algorithms with constant 

approximation 

In [10], Mingjun Song et al., have been 

proposed three constant approximation algorithms 

forK-means clustering. 

The first algorithm runs in time  nd), 

where k is the number of clusters, n is the size of 

input points, d is dimension of attributes. The second 

algorithm runs in time O(k
3
n

2
 log n). This is the first 

algorithm for K-means clustering that runs in time 

polynomial in n, k and d. The run time of the third 

algorithm O(k
5
 log

3
kd) is independent of n. Though 

an algorithm whose run time is independent of n is 

known for the K-median problem, this is the first such 

algorithm for the K-means problem. 
 

3.0 Conclusion 

 

In this paper the important problem of 

clustering and studies K-means++ algorithm in a very 
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large data situations. It leads to develop K-means++ 

initialization with MapReduce efficiently and propose 

the MapReduce k-means++ algorithm. The 

MapReduce initialization algorithm uses only one 

MapReduce job to choose k centers. 

The standard k-means++ initialization and 

weighted k-means++ initialization are applied to the 

Mapper phase and Reducer phase, respectively. For 

the reduction of MapReduce jobs, our algorithm 

saves a lot of communication and I/O cost. 

Furthermore, the proposed algorithm provides an(a2) 

approximation to the optimal solution of K-means 
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