
International Journal of Advance Research and Innovation

Vol. 3(1), Jan-Mar 2015, pp. 120-125

Doi: 10.51976/ijari.311522

www.gla.ac.in/journals/ijari

© 2015 IJARI, GLA University

Article Info

Received: 10 Feb 2015 | Revised Submission: 15 Feb 2015 | Accepted: 28 Feb 2015 | Available Online: 15 Mar 2015

*Corresponding Author: Department of Electronic and Communication Engineering, Vandayar Engineering College,

Thanjavur, Tamil Nadu, India (E-mail: pelindasec@gmail.com)

**Department of Electronic and Communication Engineering, Vandayar Engineering College, Thanjavur, Tamil Nadu,

India

Design of Low Efficiency DSP Architecture for Wireless Sensor Networks

Nirmal Raj. A* and Edit Pelinda.S**

ABSTRACT

Radio communication exhibits the highest energy consumption in wireless sensor nodes. Given their limited

energy supply from batteries or scavenging, these nodes must trade data communication for on-the-node

computation. Currently, they are designed around off-the-shelf low-power microcontrollers. But by employing a

more appropriate processing element, the energy consumption can be significantly reduced. This paper

describes the design and implementation of the newly proposed folded-tree architecture for on-the-node data

processing in wireless sensor networks, using parallel prefix operations and data locality in hardware.

Measurements of the silicon implementation show an improvement of 10–20× in terms of energy as compared to

traditional modern micro-controllers found in sensor nodes.

Keywords: Digital Processor; Parallel Prefix; Wireless Sensor Network (WSN).

1.0 Introduction

Wireless sensor network (WSN) applications

range from medical monitoring to environmental

sensing, industrial inspection, and military

surveillance. WSN nodes essentially consist of

sensors, a radio, and a microcontroller combined with

a limited power supply, e.g., battery or energy

scavenging. Since radio transmissions are very

expensive in terms of energy, they must be kept to a

minimum in order to extend node lifetime. The ratio

of communication-to- computation energy cost can

range from 100 to 3000. So data communication must

be traded for on-the-node processing which in turn

can convert the many sensor readings into a few

useful data values. The data-driven nature of WSN

applications requires a specific data processing

approach. Previously, we have shown how parallel

prefix computations can be a common denominator

of many WSN data processing algorithms. The goal

of this paper is to design an ultra- low-energy WSN

digital signal processor by further exploiting this and

other characteristics unique to WSNs.

Several specific characteristics, unique to

WSNs, need to be considered when designing the

data processor architecture for WSNs.

Data-Driven: WSN applications are all about

sensing data in an environment and translating this

into useful information for the end-user. So virtually

all WSN applications are characterized by local

processing of the sensed data.

Many-to-Few: Since radio transmissions are

very expensive in terms of energy, they must be kept

to a minimum in order to extend node lifetime. Data

communication must be traded for on-the-node

computation to save energy, so many sensor readings

can be reduced to a few useful data values.

Application-Specific: A "one-size-fits-all"

solution does not exist since a general purpose

processor is far too power hungry for the sensor

node's limited energy budget. ASICs, on the other

hand, are more energy efficient but lack the flexibility

to facilitate many different applications.

Apart from the above characteristics of

WSNs, two key requirements for improving existing

processing and control architectures can be identified

Minimize Memory Access: Modern micro-controllers

(MCU) are based on the principles of a divide-and-

conquer strategy of ultra-fast processors on the one

hand and arbitrary complex programs on the other

hand. But due to this generic approach, algorithms are

deemed to spend up to 40- 60% of the time in

121 International Journal of Advance Research and Innovation, Vol 3(1), Jan-Mar 2015

accessing memory, making it a bottle- neck. In

addition, the lack of task-specific operations leads to

inefficient execution, which results in longer

algorithms and significant memory book keeping.

Combine Data Flow and Control Flow

Principles: To man- age the data stream (to/from data

memory) and the instruction stream (from program

memory) in the core functional unit, two approaches

exist. Under control flow, the data stream is a

consequence of the instruction stream, while under

data flow the instruction stream is a consequence of

the data stream. Traditional processor architecture is a

control flow machine, with programs that execute

sequentially as a stream of instructions. In contrast, a

data flow program identifies the data dependencies,

which enable the processor to more or less choose the

order of execution. The latter approach has been

hugely successful in specialized high-throughput

applications, such as multimedia and graphics

processing. This paper shows how a combination of

both approaches can lead to a significant

improvement over traditional WSN data processing

solutions.

2.0 Parallel Prefix Operations

In the digital design world, prefix operations

are best known for their application in the class of

carry look-ahead adders. The addition of two inputs

A and B in this case consists of three stages a bitwise

propagates-generate (PG) logic stage, a group PG

logic stage, and a sum-stage. The outputs of the

bitwise PG stage (Pi = Ai © Bi and Gi = Ai ■ Bi) are

fed as (Pi, Gi)-pairs to the group PG logic stage,

which implements the following expression:

(Pi, Gi)°(Pi+l,Gi+l) = (Pi ■ Pi+l,Gi + Pi ■

Gi+l)(l)

It can be shown this "-operator has an

identify element I = (1, 0) and is associative.

Fig 1: Example of a Prefix Calculation With Sum-

Operator Using Blelloch's Generic Approach in A

Trunk- and Twig-Phase

For example, the binary numbers A =

"1001" and B = "0101" are added together. The

bitwise PG logic of LSB-first noted

A={1001}andB={1010} returns the PG-pairs for

these values, namely, (P, G) = {(0, 1); (0, 0); (1, 0);

(1, 0)}. Using these pairs as input for the group PG-

network, defined by the "-operator to calculate the

prefix operation, results in the carry-array G = {1, 0,

0, 0}.

 In fact, it contains all the carries of the

addition, hence the name carry look ahead. Combined

with the corresponding propagate values Pi, this

yields the sum S = {0111}, which corresponds to

"1110." The group PG logic is an example of a

parallel prefix computation with the given "-operator.

The output of this parallel prefix PG-network is

called the all-prefix set defined next. Given a binary

closed and associative operator ° with identity

element I and an ordered set of n elements [aO, al, a2.

. . an-1], the reduced-prefix set is the ordered set [I,

aO, (a0°al). . . (a0°al° ■ ■ ■ °an-2)], while the all-

prefix set is the ordered set [aO, (aO ° al). . . (aO ° al

° ■ ■ ■ ° an-1)], of which the last element (aO ° al °

■ ■ ■ ° an-1) is called the prefix element.

For example, if ° is a simple addition, then

the prefix element of the ordered set [3, 1, 2, 0, 4, 1,

1, 3] is _ai = 15. Blelloch's procedure to calculate the

prefix-operations on a binary tree requires two

phases. In the trunk-phase, the left value L is saved

locally as Lsave and it is added to the right value R,

which is passed on toward the root.

This continues until the parallel-prefix

element 15 is found at the root. Note that each time; a

store-and-calculate operation is executed.

Then the twig-phase starts, during which

data moves in the opposite direction, from the root to

the leaves.

Now the incoming value, beginning with the

sum identity element 0 at the root, is passed to the left

child, while it is also added to the previously saved

Lsave and passed to the right child. In the end, the

reduced-prefix set is found at the leaves.

 An example application of the parallel-

prefix operation with the sum operator (prefix-sum) is

filtering an array so that all elements that do not meet

certain criteria are filtered out. This is accomplished

by first deriving a "keep"-array, holding "1" if an

element matches the criteria and "0" if it should be

left out. Calculating the prefix-sum of this array

Design of Low Efficiency DSP Architecture for Wireless Sensor Networks 122

will return the amount as well as the position of the

to-be-kept elements of the input array. The result

array simply takes an element from the input array if

the corresponding keep-array element is "1" and

copies it to the position found in the corresponding

element of the prefix-sum-array. To further illustrate

this, suppose the criterion is to only keep odd

elements in the array and throw away all even

elements. This criterion can be formulated as keep(x)

= (x mod 2).

The rest is calculated as follows:

input =[2, 3, 8,7,6,2, 1,5]

keep=[0, 1,0, 1,0,0, 1,1]

prefix =[0, 1,1,2,2,2, 3,4]

result =[3, 7, 1,5].

The keep-array provides the result of the

criterion. Then the parallel-prefix with sum-operator

is calculated, which results in the prefix-array. Its last

element indicates how many elements are to be kept

(i.e., 4). Whenever the keep-array holds a "1," the

corresponding input-element is copied in the result-

array at the index given by the corresponding prefix-

element (i.e., 3 to position 1, 7 to position 2, etc.).

This is a very generic approach that can be used in

combination with more complex criteria as well.

3.0 The Proposed Modulo

Programming and Using the Folded Tree:

A straightforward binary tree

implementation of Blelloch's approach as shown in

Fig. costs a significant amount of area as n inputs

require p = n -1 PEs. To reduce area and power,

pipelining can be traded for throughput. With a

classic binary tree, as soon as a layer of PEs finishes

processing, the results are passed on and new

calculations can already recommence independently.

The idea presented here is to fold the tree back onto

itself to maximally reuse the PEs. In doing so, p

becomes proportional to n/2 and the area is cut in

half. Note that also the interconnect is reduced. On

the other hand, throughput decreases by a factor of

log2 (n) but since the sample rate of different

physical phenomena relevant for WSNs does not

exceed 100 kHz, this leaves enough room for this

tradeoff to be made. This newly proposed folded tree

topology is depicted in Fig. which is functionally

equivalent to the binary tree on the left.

Now it will be shown how Blelloch's generic

approach for an arbitrary parallel prefix operator can

be programmed to run on the folded tree. As an

example, the sum-operator is used to implement a

parallel-prefix sum operation on a 4-PE folded tree.

First, the trunk-phase is considered. At the top of Fig.

A folded tree with four PEs is drawn of which PE3

and PE4 are hatched differently. The functional

equivalent binary tree in the center again shows how

data moves from leaves to root during the trunk-

phase. It is annotated with the letters L and R to

indicate the left and right input value of inputs A and

B. In accordance with Blelloch's approach, L is saved

as Lsave and the sum L+R is passed. Note that these

annotations are not global, meaning that annotations

with the same name do not necessarily share the same

actual value.

Fig 2: Implications of Using A Folded Tree

(Four4-PE Folded Tree Shown at the Top): Some

Pes Must Keep Multiple Lsave's (Center). Bottom:

the Trunk-Phase Program Code of the Prefix-Sum

Algorithm On A 4-PE Folded Tree

To see exactly how the folded tree

functionally becomes a binary tree, all nodes of the

binary tree are assigned numbers that correspond to

the PE (1 through 4), which will act like that node at

that stage.

As can be seen, PE1 and PE2 are only used

once, PE3 is used twice and PE4 is used three times.

This corresponds to a decreasing number of active

PEs while progressing from stage to stage. The first

stage has all four PEs active. The second stage has

123 International Journal of Advance Research and Innovation, Vol 3(1), Jan-Mar 2015

two active PEs: PE3 and PE4. The third and last stage

has only one active PE: PE4. More importantly, it can

also be seen that PE3 and PE4 have to store multiple

Lsave values. PE4 must keep three: LsaveO through

Lsave2, while PE3 keeps two: LsaveO and Lsavel.

PE1 and PE2 each only keep one: LsaveO. This has

implications toward the code implementation of the

trunk phase on the folded tree as shown next. The PE

program for the prefix-sum trunk-phase is given at

the bottom of Fig. 4. The description column shows

how data is stored or moves, while the actual

operation is given in the last column. The write/read

register files (RF) columns show how incoming data

is saved/retrieved in local RF, e.g., X@0bY means X

is saved at address ObY, while ObY@X loads the

value at ObY into X. Details of the PE data path and

the trigger handshaking, which can make PEs wait for

new input data (indicated by T), are given in Section

V. The trunk-phase PE program here has three

instructions, which are identical, apart from the

different RF addresses that are used. Due to the fact

that multiple Lsave's have to be stored, each stage

will have its own RF address to store and retrieve

them.

Fig 3: Annotated Twig-Phase Graph of 4-PE

Folded Tree

4.0 Related Work

Hardware Implementation:

Fig. shows give a schematic overview of the

implemented folded tree design. The ASIC comprises

of eight identical 16-bit PEs, each consisting of a data

path with saves power.

The design targets 20-80-MHz operation at

1.2 V. It was fabricated in 130-nm standard cell

CMOS. A PE takes six (down-phase) or seven (up-

phase) cycles to process one 36-bit instruction, which

can be divided into three stages

Fig 4: Schematic Diagram of Design Overview

1) Preparation, which acknowledges the data and

starts the core when input triggers are received

(1 cycle).

2) Execution, which performs the load-execute-

jump stages to do the calculations and fetch the

next instruction pointer (4 cycles).

3) Transfer, which forwards the result by

triggering the next PE in the folded tree path

on a request-acknowledge basis (1-2 cycle).

This is tailored toward executing the key store-

and-calculate operation of the parallel prefix

algorithm on a tree as described. Combined

with the flexibility to program the PEs using

any combination of operators available in their

data path, the folded tree has the freedom to

run a variety of parallel-prefix applications.

Table 1: Folded Tree Circuit With Eight Pes

Executing a Trunk-Phase Under Nominal

Conditions (20 Mhz, 1.2 V)

Design of Low Efficiency DSP Architecture for Wireless Sensor Networks 124

5.0 Simulation Result

According to the algorithm the codes are

written in Verilog. Simulation is processed in Xilinx

14.6simulator.

Fig 5: Output of Folded Tree

6.0 Conclusion

This paper presented the folded tree

architecture of a digital signal processor for WSN

applications.

The design exploits the fact that many data

processing algorithms for WSN applications can be

described using parallel-prefix operations,

introducing the much needed flexibility. Energy is

saved thanks to the following: 1) limiting the data set

by pre-processing with parallel-prefix operations; 2)

the reuse of the binary tree as a folded tree; and 3) the

combination of data flow and control flow elements

to introduce a local distributed memory, which

removes the memory bottleneck while retaining

sufficient flexibility.

The simplicity of the programmable PEs that

constitutes the folded tree network resulted in high

integration, fast cycle time, and lower power

consumption.

Finally, measurements of a 130-nm silicon

implementation of the 16-bit folded tree with eight

PEs were measured to confirm its performance. It

consumes down to 8 pJ/cycle.

 Compared to existing commercial solutions,

this is at least 10x less in terms of overall energy and

2-3 x faster.

References

[1] V. Raghu Nathan, C. Schurgers, S. Park, M.

B. Srivastava, Energy aware wireless micro

sensor networks, IEEE Signal Process.

Mag., 19(2), 2002, 40-50

[2] C. Walravens, W. Dehaene, Design of low-

energy data processing architecture for wsn

nodes, in Proc. Design, Automat. Test Eur.

Conf. Exhibit, 2012, 570-573

[3] H. Karl, A. Willig, Protocols and

Architectures for Wireless Sensor Networks,

1 st ed. New York: Wiley, 2005

[4] J. Hennessy, D. Patterson, Computer

Architecture A Quantitative Approach, 4
th

ed. San Mateo, CA: Morgan Kaufmann,

2007

[5] S. Mysore, B. Agrawal, F. T. Chong, T.

Sherwood, Exploring the processor and ISA

design for wireless sensor network

applications, in Proc. 21
th

 Int. Conf. Very-

Large-Scale Integr. (VLSI) Design, 2008,

59-64

[6] J. Backus, Can programming be liberated

from the von neumann style, in Proc. ACM

Turing Award Lect, 1977, 1-29

[7] L. Nazhandali, M. Mnuth, T. Austin, Sense

Bench: Toward an accurate evaluation of

sensor network processors, in Proc. IEEE

Workload Characterizat. Symp., 2005, 197-

203

[8] P. Sanders, J. Traff, Parallel prefix (scan)

algorithms for MPI, in Proc. Recent Adv.

Parallel Virtual Mach. Message Pass. Interf

2006, 49-57

[9] G. Blelloch, Scans as primitive parallel

operations," IEEE Trans. Comput, 38(11),

1989, 1526-1538

[10] N. Weste, D. Harris, CMOS VLSI Design:

A Circuits and Systems Perspective.

Reading, MA, USA, Addison Wesley, 2010

125 International Journal of Advance Research and Innovation, Vol 3(1), Jan-Mar 2015

[11] G. E. Blelloch, Prefix sums and their

applications," Carnegie Mellon Univ.,

Pittsburgh, PA: USA, Tech. Rep. CMU-CS-

90, 1990

[12] M. Hempstead, J. M. Lyons, D. Brooks, G.-

Y. Wei, Survey of hardware systems for

wireless sensor networks, J. Low Power

Electron., 4(1), 2008, 11-29

[13] V. N. Ekanayake, C. Kelly, R. Manohar,

SNAP/LE: An ultra-low power processor for

sensor networks, ACM SIGOPS Operat.

Syst. Rev. - ASPLOS, 38(5), 2004, 27-38

[14] V. N. Ekanayake, C. Kelly, R. Manohar,

BitSNAP: Dynamic significance

compression for a low energy sensor

network asynchronous processor, in Proc.

IEEE 11th Int. Symp. Asynchronous

Circuits Syst., Mar. 2005, 144-154

