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ABSTRACT 

 

Radio communication exhibits the highest energy consumption in wireless sensor nodes. Given their limited 

energy supply from batteries or scavenging, these nodes must trade data communication for on-the-node 

computation. Currently, they are designed around off-the-shelf low-power microcontrollers. But by employing a 

more appropriate processing element, the energy consumption can be significantly reduced. This paper 

describes the design and implementation of the newly proposed folded-tree architecture for on-the-node data 

processing in wireless sensor networks, using parallel prefix operations and data locality in hardware. 

Measurements of the silicon implementation show an improvement of 10–20× in terms of energy as compared to 

traditional modern micro-controllers found in sensor nodes. 

 

Keywords: Digital Processor; Parallel Prefix; Wireless Sensor Network (WSN). 

 

1.0 Introduction 

 

Wireless sensor network (WSN) applications 

range from medical monitoring to environmental 

sensing, industrial inspection, and military 

surveillance. WSN nodes essentially consist of 

sensors, a radio, and a microcontroller combined with 

a limited power supply, e.g., battery or energy 

scavenging. Since radio transmissions are very 

expensive in terms of energy, they must be kept to a 

minimum in order to extend node lifetime. The ratio 

of communication-to- computation energy cost can 

range from 100 to 3000. So data communication must 

be traded for on-the-node processing which in turn 

can convert the many sensor readings into a few 

useful data values. The data-driven nature of WSN 

applications requires a specific data processing 

approach. Previously, we have shown how parallel 

prefix computations can be a common denominator 

of many WSN data processing algorithms. The goal 

of this paper is to design an ultra- low-energy WSN 

digital signal processor by further exploiting this and 

other characteristics unique to WSNs. 

Several specific characteristics, unique to 

WSNs, need to be considered when designing the 

data processor architecture for WSNs. 

Data-Driven: WSN applications are all about 

sensing data in an environment and translating this 

into useful information for the end-user. So virtually 

all WSN applications are characterized by local 

processing of the sensed data. 

Many-to-Few: Since radio transmissions are 

very expensive in terms of energy, they must be kept 

to a minimum in order to extend node lifetime. Data 

communication must be traded for on-the-node 

computation to save energy, so many sensor readings 

can be reduced to a few useful data values. 

Application-Specific: A "one-size-fits-all" 

solution does not exist since a general purpose 

processor is far too power hungry for the sensor 

node's limited energy budget. ASICs, on the other 

hand, are more energy efficient but lack the flexibility 

to facilitate many different applications. 

Apart from the above characteristics of 

WSNs, two key requirements for improving existing 

processing and control architectures can be identified 

Minimize Memory Access: Modern micro-controllers 

(MCU) are based on the principles of a divide-and-

conquer strategy of ultra-fast processors on the one 

hand and arbitrary complex programs on the other 

hand. But due to this generic approach, algorithms are 

deemed to spend up to 40- 60% of the time in 
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accessing memory, making it a bottle- neck. In 

addition, the lack of task-specific operations leads to 

inefficient execution, which results in longer 

algorithms and significant memory book keeping. 

Combine Data Flow and Control Flow 

Principles: To man- age the data stream (to/from data 

memory) and the instruction stream (from program 

memory) in the core functional unit, two approaches 

exist. Under control flow, the data stream is a 

consequence of the instruction stream, while under 

data flow the instruction stream is a consequence of 

the data stream. Traditional processor architecture is a 

control flow machine, with programs that execute 

sequentially as a stream of instructions. In contrast, a 

data flow program identifies the data dependencies, 

which enable the processor to more or less choose the 

order of execution. The latter approach has been 

hugely successful in specialized high-throughput 

applications, such as multimedia and graphics 

processing. This paper shows how a combination of 

both approaches can lead to a significant 

improvement over traditional WSN data processing 

solutions. 

 

2.0 Parallel Prefix Operations 

 

In the digital design world, prefix operations 

are best known for their application in the class of 

carry look-ahead adders. The addition of two inputs 

A and B in this case consists of three stages a bitwise 

propagates-generate (PG) logic stage, a group PG 

logic stage, and a sum-stage. The outputs of the 

bitwise PG stage (Pi = Ai © Bi and Gi = Ai ■ Bi) are 

fed as (Pi, Gi)-pairs to the group PG logic stage, 

which implements the following expression: 

(Pi, Gi)°(Pi+l,Gi+l) = (Pi ■ Pi+l,Gi + Pi ■ 

Gi+l)(l) 

It can be shown this "-operator has an 

identify element I = (1, 0) and is associative. 

 

Fig 1: Example of a Prefix Calculation With Sum-

Operator Using Blelloch's Generic Approach in A 

Trunk- and Twig-Phase 

 

 

For example, the binary numbers A = 

"1001" and B = "0101" are added together. The 

bitwise PG logic of LSB-first noted 

A={1001}andB={1010} returns the PG-pairs for 

these values, namely, (P, G) = {(0, 1); (0, 0); (1, 0); 

(1, 0)}. Using these pairs as input for the group PG-

network, defined by the "-operator to calculate the 

prefix operation, results in the carry-array G = {1, 0, 

0, 0}. 

 In fact, it contains all the carries of the 

addition, hence the name carry look ahead. Combined 

with the corresponding propagate values Pi, this 

yields the sum S = {0111}, which corresponds to 

"1110." The group PG logic is an example of a 

parallel prefix computation with the given "-operator. 

The output of this parallel prefix PG-network is 

called the all-prefix set defined next. Given a binary 

closed and associative operator ° with identity 

element I and an ordered set of n elements [aO, al, a2. 

. . an-1], the reduced-prefix set is the ordered set [I, 

aO, (a0°al). . . (a0°al° ■ ■ ■ °an-2)], while the all-

prefix set is the ordered set [aO, (aO ° al). . . (aO ° al 

° ■ ■ ■ ° an-1)], of which the last element (aO ° al ° 

■ ■ ■ ° an-1) is called the prefix element.  

For example, if ° is a simple addition, then 

the prefix element of the ordered set [3, 1, 2, 0, 4, 1, 

1, 3] is _ai = 15. Blelloch's procedure to calculate the 

prefix-operations on a binary tree requires two 

phases. In the trunk-phase, the left value L is saved 

locally as Lsave and it is added to the right value R, 

which is passed on toward the root.  

This continues until the parallel-prefix 

element 15 is found at the root. Note that each time; a 

store-and-calculate operation is executed.  

Then the twig-phase starts, during which 

data moves in the opposite direction, from the root to 

the leaves.  

Now the incoming value, beginning with the 

sum identity element 0 at the root, is passed to the left 

child, while it is also added to the previously saved 

Lsave and passed to the right child. In the end, the 

reduced-prefix set is found at the leaves. 

 An example application of the parallel-

prefix operation with the sum operator (prefix-sum) is 

filtering an array so that all elements that do not meet 

certain criteria are filtered out. This is accomplished 

by first deriving a "keep"-array, holding "1" if an 

element matches the criteria and "0" if it should be 

left out. Calculating the prefix-sum of this array 
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will return the amount as well as the position of the 

to-be-kept elements of the input array. The result 

array simply takes an element from the input array if 

the corresponding keep-array element is "1" and 

copies it to the position found in the corresponding 

element of the prefix-sum-array. To further illustrate 

this, suppose the criterion is to only keep odd 

elements in the array and throw away all even 

elements. This criterion can be formulated as keep(x) 

= (x mod 2). 

The rest is calculated as follows: 

input =[2, 3, 8,7,6,2, 1,5] 

keep=[0, 1,0, 1,0,0, 1,1] 

prefix =[0, 1,1,2,2,2, 3,4] 

result =[3, 7, 1,5]. 

The keep-array provides the result of the 

criterion. Then the parallel-prefix with sum-operator 

is calculated, which results in the prefix-array. Its last 

element indicates how many elements are to be kept 

(i.e., 4). Whenever the keep-array holds a "1," the 

corresponding input-element is copied in the result-

array at the index given by the corresponding prefix-

element (i.e., 3 to position 1, 7 to position 2, etc.). 

This is a very generic approach that can be used in 

combination with more complex criteria as well. 

 

3.0 The Proposed Modulo 

 

Programming and Using the Folded Tree: 

 

A straightforward binary tree 

implementation of Blelloch's approach as shown in 

Fig. costs a significant amount of area as n inputs 

require p = n -1 PEs. To reduce area and power, 

pipelining can be traded for throughput. With a 

classic binary tree, as soon as a layer of PEs finishes 

processing, the results are passed on and new 

calculations can already recommence independently. 

The idea presented here is to fold the tree back onto 

itself to maximally reuse the PEs. In doing so, p 

becomes proportional to n/2 and the area is cut in 

half. Note that also the interconnect is reduced. On 

the other hand, throughput decreases by a factor of 

log2 (n) but since the sample rate of different 

physical phenomena relevant for WSNs does not 

exceed 100 kHz, this leaves enough room for this 

tradeoff to be made. This newly proposed folded tree 

topology is depicted in Fig. which is functionally 

equivalent to the binary tree on the left. 

Now it will be shown how Blelloch's generic 

approach for an arbitrary parallel prefix operator can 

be programmed to run on the folded tree. As an 

example, the sum-operator is used to implement a 

parallel-prefix sum operation on a 4-PE folded tree. 

First, the trunk-phase is considered. At the top of Fig. 

A folded tree with four PEs is drawn of which PE3 

and PE4 are hatched differently. The functional 

equivalent binary tree in the center again shows how 

data moves from leaves to root during the trunk-

phase. It is annotated with the letters L and R to 

indicate the left and right input value of inputs A and 

B. In accordance with Blelloch's approach, L is saved 

as Lsave and the sum L+R is passed. Note that these 

annotations are not global, meaning that annotations 

with the same name do not necessarily share the same 

actual value. 

 

Fig 2: Implications of Using A Folded Tree 

(Four4-PE Folded Tree Shown at the Top): Some 

Pes Must Keep Multiple Lsave's (Center). Bottom: 

the Trunk-Phase Program Code of the Prefix-Sum 

Algorithm On A 4-PE Folded Tree 

 

 
 

To see exactly how the folded tree 

functionally becomes a binary tree, all nodes of the 

binary tree are assigned numbers that correspond to 

the PE (1 through 4), which will act like that node at 

that stage.  

As can be seen, PE1 and PE2 are only used 

once, PE3 is used twice and PE4 is used three times. 

This corresponds to a decreasing number of active 

PEs while progressing from stage to stage. The first 

stage has all four PEs active. The second stage has 
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two active PEs: PE3 and PE4. The third and last stage 

has only one active PE: PE4. More importantly, it can 

also be seen that PE3 and PE4 have to store multiple 

Lsave values. PE4 must keep three: LsaveO through 

Lsave2, while PE3 keeps two: LsaveO and Lsavel. 

PE1 and PE2 each only keep one: LsaveO. This has 

implications toward the code implementation of the 

trunk phase on the folded tree as shown next. The PE 

program for the prefix-sum trunk-phase is given at 

the bottom of Fig. 4. The description column shows 

how data is stored or moves, while the actual 

operation is given in the last column. The write/read 

register files (RF) columns show how incoming data 

is saved/retrieved in local RF, e.g., X@0bY means X 

is saved at address ObY, while ObY@X loads the 

value at ObY into X. Details of the PE data path and 

the trigger handshaking, which can make PEs wait for 

new input data (indicated by T), are given in Section 

V. The trunk-phase PE program here has three 

instructions, which are identical, apart from the 

different RF addresses that are used. Due to the fact 

that multiple Lsave's have to be stored, each stage 

will have its own RF address to store and retrieve 

them. 

 

Fig 3: Annotated Twig-Phase Graph of 4-PE 

Folded Tree 

 

 
 

4.0 Related Work 

 

Hardware Implementation: 

Fig. shows give a schematic overview of the 

implemented folded tree design. The ASIC comprises 

of eight identical 16-bit PEs, each consisting of a data 

path with saves power.  

The design targets 20-80-MHz operation at 

1.2 V. It was fabricated in 130-nm standard cell 

CMOS. A PE takes six (down-phase) or seven (up-

phase) cycles to process one 36-bit instruction, which 

can be divided into three stages 

 

Fig 4: Schematic Diagram of Design Overview 

 

 
 

1) Preparation, which acknowledges the data and 

starts the core when input triggers are received 

(1 cycle). 

2) Execution, which performs the load-execute-

jump stages to do the calculations and fetch the 

next instruction pointer (4 cycles). 

3) Transfer, which forwards the result by 

triggering the next PE in the folded tree path 

on a request-acknowledge basis (1-2 cycle). 

This is tailored toward executing the key store-

and-calculate operation of the parallel prefix 

algorithm on a tree as described. Combined 

with the flexibility to program the PEs using 

any combination of operators available in their 

data path, the folded tree has the freedom to 

run a variety of parallel-prefix applications. 

 

Table 1: Folded Tree Circuit With Eight Pes 

Executing a Trunk-Phase Under Nominal 

Conditions (20 Mhz, 1.2 V) 
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5.0 Simulation Result 

 

According to the algorithm the codes are 

written in Verilog. Simulation is processed in Xilinx 

14.6simulator. 

 

Fig 5: Output of Folded Tree 

 

 
 

6.0 Conclusion 

 

This paper presented the folded tree 

architecture of a digital signal processor for WSN 

applications.  

The design exploits the fact that many data 

processing algorithms for WSN applications can be 

described using parallel-prefix operations, 

introducing the much needed flexibility. Energy is 

saved thanks to the following: 1) limiting the data set 

by pre-processing with parallel-prefix operations; 2) 

the reuse of the binary tree as a folded tree; and 3) the 

combination of data flow and control flow elements 

to introduce a local distributed memory, which 

removes the memory bottleneck while retaining 

sufficient flexibility. 

The simplicity of the programmable PEs that 

constitutes the folded tree network resulted in high 

integration, fast cycle time, and lower power 

consumption.  

Finally, measurements of a 130-nm silicon 

implementation of the 16-bit folded tree with eight 

PEs were measured to confirm its performance. It 

consumes down to 8 pJ/cycle. 

 Compared to existing commercial solutions, 

this is at least 10x less in terms of overall energy and 

2-3 x faster. 
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