
International Journal of Advance Research and Innovation

Vol. 3(2), Apr-Jun 2015, pp. 18-22

Doi: 10.51976/ijari.321505

www.gla.ac.in/journals/ijari

© 2015 IJARI, GLA University

Article Info

Received: 20 Mar 2015 | Revised Submission: 10 Apr 2015 | Accepted: 20 May 2015 | Available Online: 15 Jun 2015

*Corresponding Author: Department of Computer Science Engineering, J. J. College of Engineering and Technology,

Trichy, Tamil Nadu, India (E-mail: honey3491@gmail.com)

**Department of Computer Science Engineering, J. J. College of Engineering and Technology

A Fine-Grained Auditing and Verification Technique for Big Data Stored on Cloud

A. Thenmozhi*, P. D. Sheba Kezia Malar Chelvi**

ABSTRACT

A management information system (MIS) provides information that organizations need to manage themselves

efficiently and effectively. Hospital Information System (HIS) is vital to decision making and plays a crucial role

in the success of the organization. Computerization of the medical records and documentation has resulted in

efficient data management and information dissemination for the users. Hospital took to develop a management

information system. It is widely accepted that the use of information and communication technology (ICT) in the

healthcare sector offers great potential for improving the quality of services provided, the efficiency and

effectiveness of personnel, and also reducing organizational expenses. The use of an efficient information

system effectively promotes the managing performance. This paper seeks to examine how MIS support hospital

information system (HIS).

Keywords: Medical Equipment; Medical Equipment Management; Hospital Information System; Management

Information System; HMIS.

1.0 Introduction

Cloud computing security is an evolving

sub-domain of computer security, network security,

and, more broadly, information security. It refers to a

broad set of policies, technologies, and controls

deployed to protect data, applications, and the

associated infrastructure of cloud computing. With

cloud computing, users can remotely store their data

into the cloud and use on-demand high-quality

applications. Using a shared pool of configurable

computing resources. Data outsourcing users are

relieved from the burden of data storage and

maintenance. When users put their data (of large size)

on the cloud, the data integrity protection is

challenging. Enabling public audit for cloud data

storage security is important. For example, a cloud

computer facility, serves European users during

European business hours with a specific application

(e.g. email) while the same resources are getting

reallocated and serve North American users during

North America's business hours with another

application (e.g. web server). This approach should

maximize the use of computing powers thus reducing

environmental damage as well of functions.

In section 2 of this paper we present a

thorough survey of the existing auditing and

verification system available in the literature. In

section 3 we present the proposed fine grained

auditing and verification technique and in section 4

we present the conclusion.

2.0 Related Work

In [1], Jules et al. express and discover

evidences of retrievability. A POR scheme allows a

store or back-up service (prover) to produce a short

proof that a user (verifier) can retrieve a target file F,

that is, that the collection holds and consistently

transmits file data sufficient for the user to recover F

in its entirety.

A POR may be viewed as a kind of

cryptographic proof of knowledge (POK), but one

specially designed to handle a large file (or bit string)

F. They explore POR protocols here in which the

communication costs, number of memory accesses

for the prover, and storage requirements of the user

(verifier) are small parameters essentially

independent of the length of F. In a POR, unlike a

POK, neither the prover nor the verifier need actually

have knowledge of F. PORs give rise to a new and

unusual security definition whose formulation is

another contribution of this work. PORs equally an

important tool for semi-trusted online archives. The

19 International Journal of Advance Research and Innovation, Vol 3(2), Apr-Jun 2015

cryptographic techniques help users ensure the

privacy and integrity of files they retrieve. It is also

natural, however, for users to want to verify that

archives do not delete or modify files prior to

retrieval. The goal of a POR is to complete these

checks without users having to download the files

themselves. A POR can also provide quality-of-

service guarantees, i.e., show that a file is retrievable

within a certain time bound.

With POR protocol the verifier stores only a

single cryptographic key-irrespective of the size and

number of the files whose retrievability it seeks to

verify—as well as a small amount of dynamic state

for each file. (One simple variant of this protocol

allows for the storage of no dynamic state, but yields

weaker security). POR protocol encrypts F and

randomly embeds a set of randomly-valued check

blocks called sentinels. The use of encryption here

renders the sentinels indistinguishable from other file

blocks. The verifier challenges the prover by

specifying the positions of a collection of sentinels

and asking the prover to return the associated sentinel

values. If the prover has modified or deleted a

substantial portion of F, then with high probability it

will also have suppressed a number of sentinels. It is

therefore unlikely to respond correctly to the verifier.

To protect against corruption by the prover of a small

portion of F, they also employ error-correcting codes.

Practical POR systems produce a problem

like they do not provide assurances about the state of

individual repositories. In [1], the authors did not

directly address error- correction for the single-server

case, and have not established formal definitions

about the complete progress.

In [2], Wang et al. consider the fact that

users no longer have physical possession of the

outsourced data. This makes the data integrity

protection in Cloud Computing a formidable task,

especially for users with constrained computing

resources. Moreover, users should be able to just use

the cloud storage as if it is local, without worrying

about the need to verify its integrity. Thus, enabling

public auditability for cloud storage is of critical

importance so that users can resort to a third party

auditor to check the integrity of outsourced data and

be worry-free. They argued that to securely introduce

an effective third party auditor, the auditing process

should bring in no new vulnerabilities towards user

data privacy, and introduce no additional online

burden to user. Thus they enabled the third party

auditor to perform audits for multiple users

simultaneously and efficiently. They utilize the

technique of public key based homomorphic linear

authenticator which enables third party auditor to

perform the auditing without demanding the local

copy of data and thus drastically reduced the

communication and computation overhead as

compared to the straightforward data auditing

approaches. By integrating the homomorphic linear

authenticator with random masking, the protocol

guarantees that the third party auditor could not learn

any knowledge about the data content stored in the

cloud server during the efficient auditing process. The

aggregation and algebraic properties of the

authenticator further benefit this design for the batch

auditing.
Specifically, their contribution can be

summarized in the following three aspects: They

motivate the public auditing system of data storage

security in cloud computing and provide a privacy-

preserving auditing protocol, i.e., this scheme enables

an external auditor to audit user’s outsourced data in

the cloud without learning the data content. This

scheme is the first to support scalable and efficient

public auditing in the cloud computing. This scheme

achieves batch auditing where multiple delegated

auditing tasks from different users can be performed

simultaneously by the third party auditor. They prove

the security and justify the performance of proposed

schemes through concrete experiments and

comparisons with the state-of-the-art. But they did

not enable secure access to storage on cloud. They

did not enable the third party auditor to efficiently

perform multiple auditing tasks.
In [3], Ateniese et al. have introduced a

provable data possession technique that can be used

for isolated data inspection. The model creates

probabilistic proofs of possession by sample random

sets of chunks from the server, which decreases I/O

costs. The client maintains constant quantity of

metadata to confirm the proof. The test or reply

procedure conveys a small, continuous quantity of

statistics, which reduces net communication. The

authors propose a generic transformation that adds to

any distant data examination arrangement based on

spot checking. They present a demonstrable data

possession that lets remote data examination, that is,

delivers proof that a third party stores in a file. The

model is lightweight, that is, by using spot

examination it allows the server to check small

portion of the file to make the proof; all preceding

methods must access the entire file. Within this

model, they give the first provably-secure scheme for

remote data checking.
The client supplies a minor quantity of

metadata to confirm the server proof. Also, the

scheme uses network bandwidth. The trial and the

reply is each a little more than 1 Kilobit. They also

present a more effective version of this structure that

proves data possession consuming a single sectional

exponentiation at the server. Both their

A Fine-Grained Auditing and Verification Technique for Big Data Stored on Cloud 20

constructions use homomorphic provable tags

because of the homomorphic property, tags detected

for many file blocks can be combined into a single

value. The server saves chunks and their reliable

labels, using them to make a proof of ownership. The

client is thus convinced of data possession, without

actually having to retrieve the file chunks. It can be

used to minimize the file block accesses and the

computation on the server. Every small update cause

recomputation and updating of the authenticator for

an entire file block, which in turn causes higher

storage and communication overheads. They have

computational burden on the server. They are not

more secure in the storage process in the servers.

In [4], R.D. Pietro et al. have introduced the

provable data possession. In this, they consider the

issue of frequent access, efficiently and securely

verifying the data in the storage server that was

faithfully storing their client’s outsourced data. The

storage server is assumed to be untrusted in terms of

both security and reliability. The problem is degraded

by the clients with incomplete capitals. Prior works

have handled this problem by either community key

cryptography or need for the client to subcontract its

data in encrypted form. In tis work the authors have

developed a provably safe provable data possession

method based completely on symmetric key

cryptography, while eliminates the need for

unpackaged encryption. Also, in difference with its

precursors, their provable data possession method lets

subcontracting of lively data.

Two very different approaches have been

suggested in this work. The first is a public- key-

based technique allowing any verifier (not just the

client) to query the server and obtain an interactive

proof of data possession. This property is called

public verifiability. The interaction can be repeated

any number of times, each time resulting in a fresh

proof. The POR scheme uses special blocks (called

sentinels) hidden among other blocks in the data.

During the verification phase, the client asks for

randomly select sentinels and checks whether they

are intact. The server modifies or deletes parts of the

data, then sentinels would also be affected with a

certain probability. However, sentinels should be

indistinguishable from other regular blocks; this

implies that blocks must be encrypted. Thus POR

cannot be used for public databases, such as libraries,

repositories, or archives. In other words, its use is

limited to confidential data. In addition, the number

of queries is limited and fixed a priori. This is

because sentinels, and their position within the

database, must be revealed to the server at each query

and a revealed sentinel cannot be reused.

In [5], Q. Wang et al. have considered the

task of letting a third party auditor, by the cloud

client, to authenticate the honesty of the lively data

stored in the cloud. The outline of third party auditor

removes the participation of the customer is the

checking of whether his data stored in the cloud is

certainly intact, which can be significant in attaining

frugalities of scale for cloud computing. The

provision for data subtleties via the most overall

forms of data process, such as block alteration,

supplement and removal, is also an important step

toward realism. The schemes with private auditability

can achieve higher scheme efficiency, public

auditability allows any- one, not just the client (data

owner), to challenge the cloud server for correctness

of data storage while keeping no private information.

The prior works on safeguarding remote data

integrity often lacks the support of public auditability

or lively data processes. Wang et al., scheme attains

both. They first classify the problems and possible

safety glitches of straight postponements by fully

lively data updates from prior works. In their

proposed system they have introduced a technique to

provision climbable and well-organized public

auditing in cloud. In specific, their scheme attains

batch checking where manifold secondary checking

something from diverse users can be done

instantaneously by the third party auditor. They also

prove the security of their proposed complex system

and justify the performance of their scheme. They

used PKC (Public Key Cryptography) based

homomorphic authenticator for the verification

protocol with public auditability. The technique can

simultaneously verify in the multiple-client

environment. The technique did not support the data

insertion.

In [6], Peterson et al. have proposed

provable data possession (PDP) that provides

probabilistic proof that can be verified when a third

party stores a file. The model is unique in that it

allows the server to access small portions of the file

in generating the proof; all other techniques must

access the entire file. Within this model, they give the

first provably-secure scheme for remote data

checking. Using PDP technique allows outsourcing of

dynamic data that is, it efficiently supports operations

such as block modification deletion and append.

In [7], Shah et al. also proposed methods for

auditing storage services. In their approach, a third-

party auditor verifies a storage provider’s possession

of an encrypted file via a challenge-response MAC

over the full (encrypted) file; the auditor also verifies

the storage provider’s possession of a previously

committed decryption key via a conventional proof-

of-knowledge protocol.

In [8], Erway et al. proposed the first PDP

scheme based on skip list that can support full

dynamic data updates. However, public auditability

and variable-sized file blocks are not supported by

default.

21 International Journal of Advance Research and Innovation, Vol 3(2), Apr-Jun 2015

In [9], the authors have proposed a a public

auditing scheme based on BLS signature and Merkle

hash tree (MHT) that can support fine-grained update

requests and our proposed is based on this scheme

Clusters, leading to a huge number of

distance computations. So, 𝑘-means++ initialization

becomes inefficient. Even though scalable 𝑘-

means++ presented in [4] chooses more than one

centers in each pass and is proven as a good

approximation of the original 𝑘-means, it still needs

too many passes in practice, which incurs huge

communication and I/O costs.

In the following section we present the

proposed technique.

3.0 Proposed Public Audit Technique

Fig 1: Proposed Public Audit System

In this section, we present a scheme that can

fully support authorized auditing and fine-grained

update requests and also propose an enhancement that

can dramatically reduce communication overheads

for verifying small updates. Figure 1 depicts the

proposed public audit system. With this proposed

technique, the cloud user first decomposes the file to

be stored in the cloud into smaller blocks and

computes the hash code for each block. The hash

codes are sent to the Trusted Third Party (TTP) and

they are stored along with block numbers, file

identifiers and chunking metadata. The hash on the

file blocks are computed with Secure Hash Algorithm

and Ranked Merkle Hash Tree.

Merkle hash tree [10] is a tree in which

every non-leaf node is labeled with the hash of the

labels of its children nodes. Hash trees are useful

because they allow efficient and secure verification of

the contents of larger data structures. The nodes in a

Ranked Merkle Hash Tree store the number of blocks

and the hash value computed over those blocks as

shown in Figure 2 [10]. This implies that the number

of blocks at each node can vary whereas MHTs use

fixed number of blocks at each node. This is the key

merit of RMHT compared to MHT.

Fig 2: A Ranked Merkle Hash Tree [10]

The files containing the actual data of the

user are then stored cloud server. At a later time when

a user wishes to check the integrity of the information

retrieved, before actually retrieving the data the user

sends an audit request to the trusted third party

mentioning the file id and the block number of the

block containing the data to be verified. Now the TTP

sends a challenge to the cloud server asking for the

file. The cloud server returns the file to the TTP. The

TTP segments the file as per the chunking metadata.

It then computes the hash over the block for which

the user requested an audit. The TTP retrieves the

hash stored for this block and compares it against the

computed hash. If both match the TTP sends a

positive reply to the user confirming the integrity of

the data stored in the cloud. Otherwise, a negative

reply is sent to the user indicating that the data stored

has undergone some change and not to be trusted.

This fine grained approach will well suit big data

applications because the hash need not be calculated

for the entire file to verify a portion of its content.

Moreover when updates happen the hash need not be

calculated for the entire file.

A Fine-Grained Auditing and Verification Technique for Big Data Stored on Cloud 22

Instead the hash code of the particular block

which contains the updated information needs to be

recalculated by the user performing updates and this

alone needs to be conveyed to the TTP which can be

updated in the RMHT maintained at the TTP.

4.0 Conclusion

In this paper an auditing technique to verify

the integrity of data stored in cloud has been

proposed. This proposed technique employs Secure

Hash Algorithm and Ranked Merkle Hash Tree. The

proposed technique allows fine grained updates to be

performed without imposing much overhead on hash

computation. Hence this technique will be very apt

for big data applications as hash re-computation over

the entire dataset will be very time consuming for

such applications.

References

[1] A. Juels, J. B. S. Kaliski, PORs: Proofs of

Retrievability for Large Files, 14th ACM

Conference on Computer and

Communications Security (CCS '07), 2007,

584-597

[2] Lou W. K. Ren, Q. Wang, Privacy-

Preserving Public Auditing for Data Storage

Security in Cloud Computing, In

Proceedings of the 30st Annual IEEE

International Conference on Computer

Communications (INFOCOM'10), , 2010, 1

- 9

[3] G. Ateniese, R. Burns, R. Curtmola, J.

Herring, O. Khan, L. Kissner, Z. Peterson,

D. Song, Remote Data Checking Using

Provable Data Possession, ACM

Transactions on Information and System

Security, 14(1), 2011

[4] G. Ateniese, R. D. Pietro, L.V. Mancini, G.

Tsudik, Scalable and Efficient Provable Data

Possession, 4th International Conference on

Security and Privacy in Communication

Netowrks (Secure Comm '08), 2008, 1-10

[5] W. Lou, K. Ren, J. Li .Q. Wang, C. Wang,

Enabling Public Auditability and Data

Dynamics for Storage Security in Cloud

Computing, IEEE Transactions on Parallel

and Distributed Systems, 22(5), 2011, 847 -

859

[6] G. Ateniese, R. Burns, R. Curtmola, J.

Herring, L. Kissner, Z. Peterson, D. Song,

Provable data possession at untrusted stores.

14th ACM Conference on Computer and

Communications Security (CCS’07), ACM,

New York, 2007

[7] M. Baker, J. C. Mogul, M. A. Shah, R.

Swaminathan, Auditing to keep online

storage services honest, Presented at HotOS

XI, 2007. Available at:

http://www.hpl.hp.com/personal/Mehul

shah/papers/hotos112007 shah.pdf.

[8] C. Erway, A. Küpçü, C. Papamanthou, R.

Tamassia, “Dynamic Provable Data

Possession, 16th ACM Conference on

Computer and Communications Security

(CCS’09), 2009, 213-222

[9] Chang Liu, Jinjun Chen, Laurence T. Yang,

Xuyun Zhang, Chi Yang, Rajiv Ranjan,

Ramamohanarao Kotagiri, Authorized

Public Auditing of Dynamic Big Data

Storage on Cloud with Efficient Verifiable

Fine-Grained Updates, IEEE Transactions

on Parallel & Distributed Systems, 25(9),

2014, 2234-2244

[10] R.C. Merkle, A Digital Signature Based on a

Conventional Encryption Function, Int’l

Cryptol. Conf. on Adv. in Cryptol.

(CRYPTO), 1987, 369-378

