
International Journal of Advance Research and Innovation

Vol. 3(2), Apr-Jun 2015, pp. 59-62

Doi: 10.51976/ijari.321514

www.gla.ac.in/journals/ijari

© 2015 IJARI, GLA University

*Corresponding Author: Department of Computer Science Engineering, Dhanalakshmi Srinivasan Engineering College,

Perambalur, Tamil Nadu, India (E-mail: praveenraj1310@gmail.com)

**Department of Computer Science Engineering, Dhanalakshmi Srinivasan Engineering College, Perambalur, Tamil Nadu,

India

Article Info

Received: 05 Apr 2015 | Revised Submission: 30 Apr 2015 | Accepted: 20 May 2015 | Available Online: 15 Jun 2015

Efficient and Secure Data Sharing in Cloud Storage by Using Encryption Techniques

J. Jayalakshmi* and P. Shanmuga Priya**

ABSTRACT

Using cloud storage, users can remotely store their data and enjoy the on-demand high-quality applications and

services from a shared pool of configurable computing resources, without the burden of local data storage and

maintenance. However, the fact that users no longer have physical possession of the outsourced data makes the

data integrity protection in cloud computing formidable task, especially for users with constrained computing

resources. Moreover, users should be able to just use the cloud storage as if it is local, without worrying about

the need to verify its integrity. This paper enables security in cloud using encryption key that is generated while

uploaded files by the user. The random key is generated using random key generation algorithm. The user can

transfer their files with the permission of the owner. Multi-keyword ranked search over encrypted cloud data

establish a set of strict privacy requirements for such a secure cloud data utilization system to become a reality.

This provides high security while sharing files in cloud. The user can audit their uploaded files and verify the

contents of the uploaded file in the cloud.

Keywords: Cloud; Security; Confidentiality; Secure DBaaS.

1.0 Introduction

Secure DBaaS is designed to allow multiple

and independent clients to connect directly to the

untrusted cloud DBaaS without any intermediate

server. The same security model that is commonly

adopted by the literature in this field where tenant

users are trusted, the network is untrusted, and the

cloud provider is honest-but-curious, that is, cloud

service operations are executed correctly, but tenant

information confidentiality is at risk. For these

reasons, tenant data, data structures, and metadata

must be encrypted before exiting from the client.
The information managed by Secure DBaaS

includes plaintext data, encrypted data, metadata, and

encrypted metadata. Plaintext data consist of

information that a tenant wants to store and process

remotely in the cloud DBaaS. To prevent an untrusted

cloud provider from violating confidentiality of

tenant data stored in plain form, Secure DBaaS

adopts multiple cryptographic techniques to

transform plaintext data into encrypted tenant data

and encrypted tenant data structures because even the

names of the tables and of their columns must be

encrypted. Secure DBaaS clients produce also a set of

metadata consisting of information required to

encrypt and decrypt data as well as other

administration information. Even metadata are

encrypted and stored in the cloud DBaaS.

The tenant data are saved in a relational

database. We have to preserve the confidentiality of

the stored data and even of the database structure

because table and column names may yield

information about saved data. We distinguish the

strategies for encrypting the database structures and

the tenant data. Encrypted tenant data are stored

through secure tables into the cloud database. To

allow transparent execution of SQL statements, each

plaintext table is transformed into a secure table

because the cloud database is untrusted.

The name of a secure table is generated by

encrypting the name of the corresponding plaintext

table. Table names are encrypted by means of the

same encryption algorithm and an encryption key that

is known to all the Secure DB aaS clients. Hence, the

encrypted name can be computed from the plaintext

name. On the other hand, column names of secure

tables are randomly generated by Secure DB aaS;

hence, even if different plaintext tables have columns

with the same name, the names of the columns of the

corresponding secure tables is different. This design

60 International Journal of Advance Research and Innovation, Vol 3(2), Apr-Jun 2015

choice improves confidentiality by preventing an

adversarial cloud database from guessing relations

among different secure tables through the

identification of columns having the same encrypted

name.

The field confidentiality parameter allows a

tenant to define explicitly which columns of which

secure table should share the same encryption key (if

any). Secure DBaaS offers three field confidentiality

attributes. Multicolumn (MCOL) should be used for

columns referenced by join operators, foreign keys,

and other operations involving two columns; the two

columns are encrypted through the same key.

Database (DBC) is recommended when operations

involve multiple columns; in this instance, it is

convenient to use the special encryption key that is

generated and implicitly shared among all the

columns of the database characterized by the same

secure type.

2.0 Related Work

In the existing architectures that store just

tenant data in the cloud database, and save metadata

in the client machine or split metadata between the

cloud database and a trusted proxy. When considering

scenarios where multiple clients can access the same

database concurrently, these previous solutions are

quite inefficient.

For example, saving metadata on the clients

would require onerous mechanisms for metadata

synchronization, and the practical impossibility of

allowing multiple clients to access cloud database

services independently. Solutions based on a trusted

proxy are more feasible, but they introduce a system

bottleneck that reduces availability, elasticity, and

scalability of cloud database services.

3.0 System Design

In the architecture does not require

modifications to the cloud database, and it is

immediately applicable no theoretical and practical

limits to extend our solution to other platforms and to

include new encryption algorithms The proposed

architecture has the further advantage of eliminating

intermediate proxies that limit the elasticity,

availability, and scalability properties that are

intrinsic in cloud-based solutions. Proposed in, that

makes it possible to execute range queries on data

and to be robust against collusive providers. Secure

DBaaS differs from these solutions as it does not

require the use of multiple cloud providers, and

makes use of SQL-aware encryption algorithms to

support the execution of most common SQL

operations on encrypted data.

Fig 1: System Architecture

3.1 Data dynamics
Data dynamics means after clients store their

data at the remote server, they can dynamically

update their data at later times. Data Dynamics

provides an integrated, industry-leading storage

management software platform designed to help

enterprise and cloud IT service providers cost-

effectively manage heterogeneous storage

infrastructures, address the explosion of unstructured

file data in enterprise environments, and move and

manage file data between on-premise and private

cloud environments.

The Data Dynamics Storage X platform is

the engine behind Data Dynamics storage

management solutions. Most enterprises today buy

varying types of storage from multiple vendors to

meet specific business needs. A typical enterprise IT

environment contains storage resources from multiple

vendors, including Dell, HP, IBM, Network

Appliance, and EMC, each with their own proprietary

device management tools.

Storage professionals face challenges with

finding ways to centrally manage data in such highly

mixed environments, and often resort to rudimentary

tools or home-grown scripts.

These challenges include moving data across

CIFS- and NFS-based file systems and efficiently

managing storage and data using multiple tools from

multiple vendors.

Efficient and Secure Data Sharing in Cloud Storage by Using Encryption Techniques 61

3.2 Public verifiability
 Each and every time the secret key sent to

the client’s email and can perform the integrity

checking operation. In this definition, it has two

entities: a challenger that stands for either the client

or any third party verifier, and An adversary that

stands for the untrusted server. Client doesn’t ask any

secret key from third party. All content must be

verifiable.

 The burden to demonstrate verifiability lies

with the editor who adds or restores material, and is

satisfied by providing a citation to a reliable source

that directly supports the contribution

3.3 Metadata generation
Separate hash key is generated for each and

every file uploaded by the user. The details of the

uploaded file such as file id, file name, hash key, date

and time also be stored. To keep the stored data

confidential against untrusted cloud service providers,

a natural way is to store only the encrypted data and

providing an efficient access control mechanism

using a competent cipher key which is becoming a

promising cryptographic solution.

3.4 Privacy against third party verifiers
The system is private against third party

verifiers. If the server modifies any part of the client’s

data, the client should be able to detect it.

Furthermore, any third Party verifier should also be

able to detect it. In case a third party verifier verifies

the integrity of the client’s data, the data should be

kept private against the third party verifier.

Information privacy, or data privacy (or data

protection), is the relationship between collection and

dissemination of data, technology, the public

expectation of privacy, and the legal and political

issues surrounding them.

Privacy concerns exist wherever personally

identifiable information or other sensitive information

is collected and stored – in digital form or otherwise.

Improper or non-existent disclosure control can be

the root cause for privacy issues.

The right of the people to be secure in their

persons, houses, papers, and effects, against

unreasonable searches and seizures, shall not be

violated, and no Warrants shall issue, but upon

probable cause, supported by Oath or affirmation, and

particularly describing the place to be searched, and

the persons or things to be seized.

3.5 Key generation
Symmetric-key algorithms are ways of

doing cryptography where the keys for decryption

and encryption are exactly the same shared secret.

You can generate the secret randomly, from a

password, or through a secret key-exchange

procedure like Diffie-Hellman. Symmetric-key

algorithms are very important because they are faster

on computers than public-key algorithms.

In public-key cryptography, also called

asymmetric-key cryptography, it is hard to figure out

the key for decryption from the key for encryption, so

you can tell the key for encryption to the public with

no problem, and everyone can send you secret

messages. Stream ciphers encrypt a message as a

stream of bits one at a time.

Block ciphers take blocks of bits, encrypt

them as a single unit, and sometimes use the answer

later too. Blocks of 64 bits have been commonly

used; though modern ciphers like the Advanced

Encryption Standard use 128-bit blocks.

Symmetric-key algorithms are a class of

algorithms for cryptography that use the same

cryptographic keys for both encryption of plaintext

and decryption of cipher text.

The keys may be identical or there may be a

simple transformation to go between the two keys.

The keys, in practice, represent a shared secret

between two or more parties that can be used to

maintain a private information link.

This requirement that both parties have

access to the secret key is one of the main drawbacks

of symmetric key encryption, in comparison to

public-key encryption.

Symmetric-key encryption can use either

stream ciphers or block ciphers

1. Stream ciphers encrypt the digits (typically

bytes) of a message one at a time.

2. Block ciphers take a number of bits and encrypt

them as a single unit, padding the plaintext so

that it is a multiple of the block size. Blocks of

64 bits have been commonly used.

4.0 Conclusion

In this paper an innovative architecture that

guarantees confidentiality of data stored in public

cloud databases is proposed. Unlike state-of-the-art

approaches, our solution does not rely on an

intermediate proxy that we consider a single point of

failure and a bottleneck limiting availability and

scalability of typical cloud database services.

A large part of the research includes

solutions to support concurrent SQL operations

(including statements modifying the database

structure) on encrypted data issued by heterogeneous

and possibly geographically dispersed clients.

The proposed architecture does not require

modifications to the cloud database, and it is

immediately applicable to existing cloud DBaaS,

such as the experimented Postgre SQL Plus Cloud

Database, Windows Azure, and Xeround. There are

no theoretical and practical limits to extend our

62 International Journal of Advance Research and Innovation, Vol 3(2), Apr-Jun 2015

solution to other platforms and to include new

encryption algorithms.

References

[1 M. Armbrust et al, A View of Cloud

Computing, Comm. of the ACM, 53(4),

2010, 50-58

[2] A. J. Feldman, W. P. Zeller, M. J. Freedman,

E. W. Felten, SPORC: Group Collaboration

Using Untrusted Cloud Resources, Ninth

USENIX Conf. Operating Systems Design

and Implementation, 2010

[3] C. Gentry, Fully Homomorphic Encryption

Using Ideal Lattices, 41st Ann. ACM Symp,

Theory of Computing

[4] H. Hacigu¨mu¨ s ,̧ B. Iyer, S. Mehrotra,

Providing Database as a Service, 18th IEEE

Int’l Conf. Data Eng, 2002

[5] H. Hacigu¨mu¨ s¸, B. Iyer, C. Li, S.

Mehrotra, Executing SQL over Encrypted

Data in the Database-Service-Provider

Model, ACM SIGMOD Int’l Conf.

Management Data, 2002

[6] W. Jansen, T. Grance, Guidelines on

Security and Privacy in Public Cloud

Computing, Technical Report Special

Publication 800-144, NIST, 2011

 [7] J. Li, M. Krohn, D. Mazie`res, D. Shasha,

Secure Untrusted Data Repository

(SUNDR), Sixth USENIX Conf. Opearting

Systems Design and Implementation, 2004

[8] J. Li, E. Omiecinski, Efficiency and Security

Trade-Off in Supporting Range Queries on

Encrypted Databases, Proc. 19th Ann. IFIP

W WG 11.3 Working Conf. Data and

Applications Security, 2005

[9] P. Mahajan, S. Setty, S. Lee, A. Clement, L.

Alvisi, M. Dahlin, M. Walfish, Depot: Cloud

Storage with Minimal Trust, ACM Trans.

Computer Systems, 29(4), article 12, 2011

[10] E. Mykletun, G. Tsudik, Aggregation

Queries in the Database-as-a-Service Model,

20th Ann. IFIP WG 11.3 Working Conf.

Data and Applications Security, 2006

[11] R. A. Popa, C. M. S. Redfield, N. Zeldovich,

H. Balakrishnan, CryptDB: Protecting

Confidentiality with Encrypted Query

Processing, 23rd ACM Symp Operating

Systems Principles, 2011

