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ABSTRACT

In the present study, an attempt has been made to investigate the effect of machining parameters (cutting speed,
feed rate, depth of cut and tool nose radius) on material removal rate and surface roughness in finish hard
turning of H13 tool steel using carbide tool. The machining experiments were conducted based on response
surface methodology (RSM) using face centered central composite design. A comprehensive analysis of
variance (ANOVA) was used to fully identify the most influential parameters, and the adequacy of both fitted
second order regression models were checked. 3D response surfaces and 2D contour plots were analyzed to
completely observe the impact of combinatory different important interactive factors on the machinability
behaviour under different turning conditions. The MRR and SR increase by increasing the cutting speed, feed
rate and depth of cut. The depth of cut and feed rate are the most influential factors for increasing the MRR and
SR respectively. Mathematical models for MRR and SR were developed by using Design Expert-9 software.
Finally, a multi-objective optimization technique based on the use of desirability function (DF) technique was
then applied to find optimal combinations of input machining parameters capable of producing the highest
possible amount of MRR and lowest amounts of SR within process domain. The obtained predicted optimal
results were then verified experimentally to compute confirmation errors. The values of relative validation
errors, all being found to be quite satisfactory, 5.29% for MRR and 8.1% for SR, proves the efficacy and
reliability of suggested approach.

Keywords: Analysis of Variance (ANOVA), Desirability Function (DF); Face centered Central (FCC)
Composite Design; Multi-Objective Optimization; Response Surface Methodology (RSM).

1.0 Introduction

The economy of any country mainly
depends on growth of its manufacturing industries.
Hence, enhancement in manufacturing technology,
especially machining of hardened steel has been
revolutionized many branches of industry such as
automotive, die and mould sectors. The application of
hard turning has been proved extremely advantageous
in producing bearings, gears, cams, shafts, axels, and
other mechanical components since the early 1980s
[4]. In turning operation, material removal rate and
the quality of the surface finish are important
requirement for many turned workpieces. Material
removal process initiates structural changes to the
surface of a workpiece. This metallurgical
transformation on the surface occurs due to intense
thermal energy produced during turning which
enhance the chemical interaction of surface with

environment. The characteristics of worked surface
may exhibit a vast difference compared to that of the
bulk of the material. Thus, the selection of optimum
machining parameters is very important in controlling
quality [1, 2].

2.0 Review of Previous Work

In the current scenario, the most effective machining
approach is determined by investigating the different
parameters affecting turning process and seeking
different ways of obtaining the optimal machining
condition and performance. M. Thomas and Y.
Beauchamp used full factorial experimental design in
which 288 experiment have been conducted on
turning process, which investigated the optimum
cutting parameters (cutting speed, feed rate, depth of
cut and nose radius) on cutting force, tool vibration
and surface roughness. The results investigated
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through ANOVA revealed that steady cutting forces
depend mainly on depth of cut and feed rate. High
cutting speed, a low feed rate, a large tool nose
radius, and a low depth of cut are used for reducing
vibration and increasing tool damping while low
cutting speed helps to reduce the surface roughness
by reducing the effect of built-up edge formation [1].
Meng Liu et al. experimentally investigated the effect
of tool nose radius and tool wear on residual stress
distribution in hard turning of bearing steel JIS SUJ2.
In this study, three types of CBN tools with different
nose radius 0.4, 0.8 and 1.2 mm were used. The
results show that remarkable residual stress
distribution affected by the tool nose radius [3].
Grzesik have used cutting tool of material mixed
ceramics (aluminium oxide plus TiC or TiCN) for
machining of hardened steel (HRC 50-65) under dry
turning condition and moderate cutting speed ranging
from 90 to120 m.min. This study revealed an
extensive characterization of the surface roughness
produced during hard turning (HT) operations
performed with conventional and wiper ceramic tools
at variable feed rate and its changes originated from
tool wear [4]. G. Poulachon et al. performed hard
turning operation on high strength alloy steel (45 <
HRC < 65) using polycrystalline cubic boron nitride
(PCBN) cutting tool in order to reach surface
roughness close to those obtained in grinding
operation. This study observed that flank wear of
cutting tool has a large impact on the quality of
machined parts namely surface finish, geometry
accuracy and surface integrity [5]. D.I. Lalwani et al.
has been investigated the effect of machining
parameters namely cutting speed, feed rate and depth
of cut on cutting force and surface roughness in hard
turning of MDN 250 using coated ceramic tool using
response surface methodology (RSM) experimental
approach. The results indicate that cutting forces and
surface roughness do not vary much with cutting
speed in the range of 55-93 m/min [6]. H.
Bouchelaghem et al. has been investigated the wear
test on the CBN tool during hard turning of AISI D3
(60 HRC). The quality of surface finish, cutting
forces and temperature has been studied according to
the cutting parameters (cutting speed, feed, depth of
cut) and tool wear. The feed rate is the most affecting
factor on the roughness values. The proposed
statistical models are based on the response surface
methodology correlating the cutting parameters
together with roughness, cutting forces and tool life
[7]1. J.A. Arsecularatne et al. investigated the
machining through dry turning of AISI D2 steel of
hardness 62 HRC with PCBN tools. The results show
that the most feasible feeds and speeds fall in the
ranges 0.08-0.20 mm/rev and 70-120 m/min,
respectively while the highest feed used resulted in
the highest volume of material removal, lower feeds

resulted in higher tool life values [8]. Li Qian,
Mohammad Robiul Hossan have been studied the
finish hard-turning operation on of AISI 52100
bearing steel, AISI H13 hot work tool steel, AISI D2
cold work steel, and AISI 4340 low alloy steel as a
function of cutting speed, feed, cutter geometry, and
workpiece hardness. Cubic boron nitride (CBN) or
polycrystalline (PCBN) inserts are used as cutting
tool materials for high speed machining. Among
process parameters, cutter geometry and workpiece
hardness, the feed has the most significant effect on
cutting and feed forces while Cutting force and feed
force increase with increasing feed, tool edge radius,
negative rake angle, and workpiece hardness [9].
Tongchao Ding et al. investigated the effects of
machining parameters on cutting forces and surface
roughness in hard milling of AISI H13 steel with
coated carbide tools. Taguchi®s four-level orthogonal
array was used for the experimentation with four
machining parameters namely cutting speed, feed,
radial depth of cut and axial depth of cut. Surface
roughness under optimal machining parameters is less
than 0.25 um, which proves that finish hard milling is
an alternative machining route to grinding process in
die and mold industry [10]. Tugrul O” zel and Yig~it
Karpat have been experimentally investigated the
effects of cutting edge geometry, workpiece hardness,
feed rate and cutting speed on surface roughness and
tool wear in the finish dry hard turning of AISI H13
steel using Cubic Boron Nitride (CBN) tools. Neural
network model and regression models were
developed to predict surface roughness and tool flank
wear over the machining time for variety of cutting
conditions in finish hard turning. The results show
that better surface roughness but slightly faster tool
wear is obtained by decreasing feed rate and
increasing cutting speed [11]. Reginaldo T. Coelho et
al. showed the results of tool wear, cutting force and
surface finish obtained from the turning operation on
hardened AISI 4340 using PCBN coated and
uncoated edges. The experiments were conducted
with three different coatings on tool for finishing
conditions: TiAIN, TiAIN-nanocoating and AICrN
and result showed that TiAIN-nanocoating performed
better in terms of tool wear and surface roughness
[12]. D. Philip Selvaraj et al. carried out dry turning
operation on two different grades of nitrogen alloyed
duplex stainless steel with TiC and TiCN coated
carbide cutting tool inserts. The experiments were
conducted at three different cutting speeds (80, 100
and 120 m/min) with three different feed rates (0.04,
0.08 and 0.12 mm/rev) and a constant depth of cut
(0.5 mm). The machining parameters are optimized
using signal to noise ratio and the analysis of
variance. The results showed that the feed rate is the
more significant parameter influencing the surface
roughness and cutting force. The cutting speed was
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observed as the more
influencing the tool wear [13].

The literature review above indicates that
most of the studies have been concentrated on AlSI
H-13 tool steel and other types of steels. In recent
years, along with other types of steels, AISI H-13 tool
steel has also emerged as an important material for
industrial applications. Despite extensive research on
dry turning process, determining the desirable
operating conditions during dry turning of H-13 tool
steel, in industrial setting, still relies on the skill of
the operators and trial-and-error methods. So, the
determination of the parametric settings that can
simultaneously optimize multiple responses of dry
turning of this material is an important issue to the
engineers. Therefore, it is imperative to develop a
suitable technology guideline for optimum machining
conditions for dry turning of AISI H-13 tool steel. In
addition to this, researchers have usually preferred to
apply neural network and GRA-based approaches for
optimizing the multiple responses of turning process
although  there exist some other easily
comprehendible and  computationally  simple
approaches for multi-response optimization. So, the
aim of the present work is to obtain the optimum
machining conditions for dry turning operation of
AISI H-13 tool steel using coated ceramic tool for
maximum material removal rate and maximum
surface finish based on the use of desirability function
(DF) approach. Experiments, based on central
composite design of response surface methodology
(RSM), were carried out to study the effect of various
parameters, viz. cutting speed, feed rate, depth of cut
and tool nose radius, on material removal rate and
surface finish. From the experimental data, multiple
regression models for the MRR and surface finish are
obtained in the present work.

significant  parameter

3.0 Experimentation

3.1 Materials, machine tool and measurement

The distinguishing feature of this steel is
superior toughness compared to other hardened
steels. This steel typically has very high vanadium,
nickel, carbon, manganese contents which give it
superior mechanical properties such as high wear
resistance, high machinability, high grindability, and
very low distortion during heat treatment, high
resistance of decarburization etc.

Table 1 indicates the chemical composition
of H13 steel. Typical applications of H13 tool steel
are to make aluminium Extrusion Dies, Die Casting
Dies, Heavy Duty Compression Tools, Forming
Punches, Hot Forging Dies, Shear Blades, Plastic
Mold Dies, and Bolt Dies. Bars of T6 H13 steel, 22
mm in diameter and 250mm in length were used in
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the study. The hardness was obtained as 55.0+0.5
HRC. The chemical compositions and mechanical
properties of H13 steel as received are given in
Tables 1 and 2, respectively.

Fig 1: Photographic View of CNC Lathe Machine

L]
=
pa—
—
=
Q

Hement MoGo |V (AT |V |Ee

=
—
==
—
=

Compositio | 037 (030 | 03
0 f

020 152 112 1000 | 080 1000 1000 (005 |Ba
1 1 1

BRI T

Table 2: Mechanical Properties of H13 Tool Steel

Tensile strengfh, ultimate af 20°C 1545 MPa
Tensile strength, yield at 20°C 1328 MPa
Reduction of area at 20°C 50.00%
Modulus of elasticity at 20°C N5GRa
Poisson’s ratio 0.2

Carbide inserts chamfered (25° x0.1mm)
TNMA160408S01525 were used in the experimental
work mounted on PSBNR2525K12 tool holder. The
tool angles are as follows: back rake angle = —5°, side
rake angle= —5°, principal cutting edge angle= 92°,
end cutting edge angle = 27°. Rigid, high speed
precision CNC Turning Center STALLION 100
HD/100 SU (HMT, India) lathe equipped with speed
range 100-3000 rpm was used for experimentation.
For improving the machining performance,
workpiece material was placed between chuck (three
jaws) and tailstock and the tool overhang was kept at
the minimum possible value of 20 mm. The two most
crucial performance measures in dry turning are
metal removal rate and workpiece surface roughness.
The material removal rate (g/min) was calculated by
weight difference of the specimen before and after
machining using high-precision balance. The surface
roughness was measured with Talysurf-6 at three
different locations on the workpiece after machining
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and the average value has been taken in the present
study [15].

3.2 Response surface methodology

RSM is a collection of mathematical and
statistical techniques that are useful for the modeling
and analysis of problems in which a response of
interest is influenced by several variables and the goal
is to optimize this response (Montgomery, 1997).
RSM also computes relationships among one or more
measured responses and the essential input factors.
RSM was applied to model and optimize the dry
turning process. The Design Expert 9 software was
used to analyze [14] and develop the regression
model for the responses. Face-centered central
composite design (CCD) has been employed to
conduct the experiments. It is a sort of second order
design set which employ three levels for each design
parameter and can efficiently handle linear, quadratic
as well as interaction terms in process modelling.

In order to observe the effects of the turning
factors, a second-order polynomial response surface
mathematical model has been considered to evaluate
the parametric effects on MRR and surface roughness
machining crit(iria:

4 4 4
WMRR) =g+ X o X, + XX+ 3 Y o, X X, +e (D
el ] =l

Jui+l

4 4 2 3 3 (2)
V(SR)= 50"'21‘,;3:‘1: +§ﬁ.-‘f¢ +2 2 B AX, +=

i=l =i+l

Where X1, X2, X3 denote the input
parameters cutting speed, feed rate, radial depth of
cut and tool nose radius; Y(MRR) and y(SR) indicate
the response variable namely material removal rate
and surface roughness respectively. The terms o,
are the second-order regression coefficients. The
method of least squares was employed to determine
the coefficients of the polynomials. The second term
under the summation sign of this polynomial equation
is attributable to linear effect; whereas the third term
corresponds to the higher-order effect; the fourth term
of the equation includes the interactive effects of the
machining parameters [14].

3.3 Experimental Plan Procedure

The levels of machining parameters namely
cutting speed, feed rate, depth of cut and tool nose
radius were selected with the help of machine
manual, machine expert and performing the pilot test
on a CNC Lathe machine. The rest of the parameters
are adjusted automatically by the machine itself. A
pilot experimentation using one-factor-at-a-time
approach was conducted to identify feasible ranges of
machining parameters. On the basis of pilot
experimentation, the ranges and subsequently the
levels of the machining parameters were selected as
shown in Table 3 [16]. The levels of machining
parameters namely cutting speed, feed rate, depth of
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cut and tool nose radius were selected with the help
of machine manual, machine expert and performing
the pilot test on a CNC Lathe machine. The rest of the
parameters are adjusted automatically by the machine
itself. A pilot experimentation using one-factor-at-a-
time approach was conducted to identify feasible
ranges of machining parameters. On the basis of pilot
experimentation, the ranges and subsequently the
levels of the machining parameters were chosen (in
Table 1) [16]. Twenty one experiments are performed
on the bases of standard table obtained from the help
of Design-Expert 9 software. Table 4 shows complete
design matrix with responses namely material
removal rate and surface finish. The experiments
were conducted randomly as shown in design matrix
(,,std” column in Table 4).

Table 3: Machining Parameters and Their Levels

Low Centre High
Factors Unit level (1) | level (2) | level (3)
Cutting
cpeen Rpm 800 1900 3000
Feed rate T Imdin 0.05 0.75 0.1
Depth of Mm 0.25 0.625 1
cut
Tool nose Mm 0.4 0.8 12
radius

4.0 Results and Discussion

The first step in data analysis of the present
study is to summarize the test results for each
experiment performed by the using response surface
methodology. Table 4 shows all values of material
removal rate and surface roughness obtained through
the experiment. The material removal rate and surface
roughness was obtained in the range of 0.1 gm/sec to
0.49 gm/sec and 0.28 pum to 0.72 pm, respectively.

Table: 4. Design Matrix with Responses

Facrto | Factor | Facto |Factor| Respons | Respons
1 2 r 3 4 el e
St | Ra A <: _\!g;e MAlean Mean
d| n |[speeal|B: Feed Etiefi‘l];‘ Rn;iiu MER SR
pumy | PPN (| gmm) | (gmrsecy | mm)
18 1 1200 D075 0625 0 0.3 0 46
2 2 3000 025 o 045 .7
15 3 1900 D.625 o4 0.34 041
1< <4 1200 1 0.8 031 0 48
1z = 1900 D.625 0.8 0.37 0.6l
5 =] 3000 025 1.2 013 0 36
o 7 B00 D625 [ 0. 102 a3
13 e S00 [ .32 0.35
7 o |00 1.2 018 0_43
19| 10 1200 0.8 0.2 04
11 11 1200 0.8 0167 031
3 12 3000 1.2 0.36 0.4
201 13 1200 0.8 0. 26 0 42
10| 14 3000 0.8 0.38 059
13| 15 1200 08 018 0_43
4 16 S00 1.2 013 038
16| 17 19000 1.2 .36 0.36
8 18 |00 0 0.12 028
21| 19 | 1900 0.8 0.28 0.45
1 20 | 3000 0.4 0.49 0.72
17| 21 1900 0.8 0.27 043
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Fig 2: Variation of MRR with Speed, Feed, Depth
of Cut and Tool Nose Radius
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Fig 3: Variation of SR with Speed, Feed, Depth of
Cut and Tool Nose
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Fig 4: Fitted Response Surface and Contour Plot
for MRR Model
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Fig 5: Fitted Response Surface and Contour Plot
for SR Model

Fig. 2 shows the variation of MRR with

cutting parameters. It can be seen that, MRR
continuously increases with increasing the values of
cutting speed, feed rate and depth of cut.

Fig. 3 shows the 3 D fitted response surfaces
and contour plots for MRR. Contour plot of cutting
speed v/s feed indicates that at constant value of
0.625 mm depth of cut and 0.8 mm tool nose radius,
MRR increases with simultaneously increasing the
values of cutting speed and feed rate. Maximum
value of MRR in contour plot is predicted 0.5 gm/sec
at 3000 rpm cutting speed and 0.1 feed rate, seen by
red colour.

Contour plot of feed and depth of cut
revealed that at fixed values of 1900 rpm and 0.8 mm
tool nose radius, MRR increases with continuously
increasing the values of feed and depth of cut.
Maximum value of MRR in contour plot is predicted
0.369 gm/sec at maximum values of feed and depth
of cut. Contour plot of speed and nose radius at fixed
vales of feed (0.075 mm) and depth of cut (0.625
mm) indicates curvilinear nature of MMR.

Higher value of MRR (0.468 gm/sec) is
achieved at the upper right region of contour plot area
indicated by red colour where cutting speed and nose
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radius is at its maximum value. Contour plot between
feed and nose radius, when speed 1900 rpm and depth
of cut 0.625 mm are constant , also indicates
quadratic nature curve of MMR.

Higher value of MRR (0.46 gm/sec) is
achieved at the upper right region of contour plot area
indicated by red colour where feed and nose radius is
at its maximum value. The response graphs (Fig 2
and Fig 3) suggest that the factors at levels A3, B3,
C3 and D2 are the best levels that give the maximum
MRR. Similarly, the factors at levels Al, B1, Cland
D3 are the best levels that give minimum surface
roughness.

Fig. 3 shows the variation of SR with cutting
parameters. It can be seen that, SR continuously
increases with increasing the values of cutting speed,
feed rate and depth of cut. Fig.3 indicates that the
maximum slop of the curve SR v/s feed rate, hence,
increment of surface roughness mainly depends on
the feed rate. SR decreases with increasing the tool
nose radius.

Fig. 5 shows the 3 D fitted response surfaces
and contour plots for SR. Contour plot of cutting
speed v/s nose radius indicates that at constant value
of 0.075 mm feed and 0.625 mm depth of cut, SR
decreases with simultaneously decreasing the values
of cutting speed and tool nose radius.

Minimum value of SR in the contour plot is
predicted 0.25um at the upper left region of contour
plot area indicated by blue colour where speed is at
its minimum value while tool nose radius is at its
maximum value. Contour plot of feed v/s nose radius
indicates that at constant value of 1900 rpm speed
and 0.625 mm depth of cut, SR decreases with
simultaneously decreasing the values of feed and tool
nose radius.

Contour plots of speed v/s nose radius and
feed v/s nose radius indicate quadratic nature curve of
SR.

Analysis of variance (ANOVA) is a
statistically based objective decision-making tool for
detecting any differences in average performance of
groups of items tested (Ross, 1988). ANOVA is
performed to identify the process parameters of wire-
EDM that significantly affect the multiple
performance characteristics.

An ANOVA table consists of sums of
squares, corresponding degree of freedom, the F-ratio
corresponding to the ratios of two mean squares, and
the contribution proportions from each of the control
factors [16].

The experimental results were analyzed in
Design Expert-9 software. The results of experiments
in the form of ANOVA are present in table 5.

An ANOVA summary table is commonly
used to summarize the test of the regression model,
test of the significance factors and their interaction

and lack-of-fit test. If the value of ,,Prob > F* in
ANOVA table is less than 0.05 then the model, the
factors, interaction of factors are said to be significant

[7].

Table 5- ANOVA (Partial Sum of Square) for
Material Removal Rate

Source Sum of Squares  d.f Mean Square  F value el Remark
3 " ProbSF )
Model 024 14 103.16 <00001  sigmficant
A-Speed 0039 1 20813 < 00001
B-Feed 1 12164 <0.0001
C-Depth of cut 1 24943 <0.0001
D-Nose Radius 1 1 03189
AB 1
AC 1 5.000E-003
AD 1 6.052E-003
BC 1 0014
BD 1 4666E-003
CD 1 2.000E-004
A 1 3449E-003
B* 1 2.188E-004 2
T 1 2.739E-003 0.0069
D* 1 0.013 0.0001
Restdual 6 1.694E-004
Lack of Fit 2 BI133E006 0033 09682 notsignificant
Puge Eror 4 2500E-004
Cor Toal 20

Pvale

A (periial sum of squars) for MEE. after ;emoving inzignificant tarms

Source Som of Squares  df MeoanSquae Fvalue Drob Remark
Modal 024 11 [L75) 13351 <0000 significant
A-Spesd 0039 1 0.0% 23418 <0.0001

B-Fesd 0.021 1 0.021 12487 < 0.0001
C-Daph of cut 0.042 1 0.042 25604 < 0.0001

AR 0.011 1 0.011 66.00 < 0.0001

AD 60SE-DO3 1 6O0SIEDD3  36.67  0.0002

EC 0.014 1 0.014 8757 <00001

ED 466-D03 1  4666E0D3 28137  0.0005

A 42TED03 1 4IT3E003 2589 0.000T

c IMEEDHD3 1 344EE0D3 2080 0.0013

¥ 0.013 1 0013 B34 < 0.0001
Rasidual 1483E-D03  ©  1850E-004
Lack of Fit 4B5IEDH04 5 OTOIEDDS 030  O.B364  notsignificent
Durs Ervor LOMEDOS 4  1500E-0D4
Car Total 023 20

Std. Dev. 0.013 R 08840

Mean 028 R,  os866

CV.% 466 R; 00704

(partiz] sum of squars)

for mface rovghness

Sourcs Sum of Squarss 4 Mean Squae  Fvalue E‘;g; Remark
Maodel 0.29 14 0.0 393 <0.0001  significant
A-Bpesd 0042 1 004 11002 <0.0001
E-Fead 0043 1 0.045 117.74  <0.0001

CDephof cut  5200E-003 1 3INEDN 1384 0.0098
D-Nosz Radive  1250E-003 1 1I50E003 327 01205

AR 1 960E-003 1 19860E003 513 0.0641

AC 4500E-004 1 4500E004 11B 03193

AD JI40E-003 1 3240E003 B4E  0.269

BEC 1000E-004 1 1000EOD4 051 04867

ED 4410E-003 1 4410E003 1154 0.0146

CD 0000 1 0.000 0.000 1.0000

IS 4800E-004 1 4000ED4 131 02847

E 1144E-003 1 214E003 561  0.0536

c 1468E-003 1 1468E003 384 00877

I¥ 5 406E-003 1 S406E003 1415 0.0004
Fsidual 1193E-003 6 3.512E-004
Lack of Fit 1312E-005 1 G561E006  0.012 09886 notzisnficant
Pugz Emor 1IR0E-003 4 STODE-DM4
Cor Totsl 0.29 n
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Smre  SimdSqers df MemSqum Fuale ;;‘;}"; Remark
Mods! 0.2% 7 00 3767 <0001 significent
ASpead 0042 1 082 4000 <0001

E-Fesd 0045 1 085 4281 <0000l
CDephofcst  S200E-003 1 SI00E003 503 Q40
DNemRadivs 002 1 008 2672 00002

iD IME00 1 GMEL03 308 0007

ED 4410E-005 1 440E003 420 0.0613

g LI26E-004 1 LIZGEGM 011 07487

Residual 0014 13 LOSIED03

Lack of Fit 0011 ¢ L26E03 211 02300 notsinfimt
DosEwar  2200E-003 4 STOE04

Cor Totl X N

S1d. D, 0032 B 00530

1 —
Mean 0.4 R oom
CV.% 134 R, om0

Table 5 shows that the model is significant
for MRR and cutting speed (A), feed rate (B) depth of
cut (C), AB, AD, BC, BD, A2, C2, D2 are only the
significant factors (terms). All other terms are
insignificant. By selecting the significant terms, the
resulting ANOVA table for reduced MRR model is
shown in Table 6. Table 7 shows that the model is
significant for SR and cutting speed (A), feed rate (B)
depth of cut (C), AD, BD, D2 are only the significant
factors (terms).

All other terms are insignificant. By
selecting the significant terms, the resulting ANOVA
table for reduced SR model is shown in Table 8. The
lack-of-fit is insignificant for both MRR and SR
models thereby indicate that the models fit well with
the experimental data. Depth of cut is the most
dominant factor to MRR because of having highest F
value (256.04) and feed rate has little influence on
MRR of tool steel. Feed rate is the most dominant
factor to SR because of having highest F value
(42.81) and depth of cut has little influence on SR.

The various R2 statistics (i.e. R2, adjusted
R2 () and predicted R2 () of MRR and SR are given
in Tables 6 and 8. The value of R2 = 0.9940 for MRR
indicates that 99.40% of the total variations are
explained by the model. The adjusted R2 is a statistic
that is adjusted for the “size” of the model; that is, the
number of factors (terms).

The value of the = 0.9866 indicates that
98.66% of the total variability is explained by the
model after considering the significant factors. =
0.9704 is in good agreement with the and shows that
the model would be expected to explain 97.04% of
the variability in new data (Montgomery, 2001).
,,C.V.“ stands for the coefficient of variation of the
model and it is the error expressed as a percentage of
the mean ((S.D./Mean)x100). Lower value of the
coefficient of variation (C.V. = 4.66 %) indicates
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improved precision and reliability of the conducted
experiments.

The value of R2 = 0.9530 for SR indicates
that 95.30% of the total variations are explained by
the model. The value of the = 0.9277 indicates that
92.77% of the total variability is explained by the SR
model after considering the significant factors. =
0.8930 is in good agreement with and shows that the
model would be expected to explain 89.30% of the
variability in new data. Lower value of the coefficient
of variation (C.V. = 7.34 %) indicates improved
precision and reliability of the conducted
experiments. The surface micrograph after machining
obtained through scanning electron microscopy
(SEM) for maximum MRR and minimum SR are
shown in Figures 6 and 7.

In any machining process, a mathematical
model has to be developed, relating the machining
output to the machined parameters and used for
prediction, process control or optimization. In order
to evaluate the effect of cutting parameters of turning
process in terms of cutting performance such as
surface finish of the machined workpiece and the
amount of material removed, Design Expert-9
software was applied to model the turning process.
Based on the analysis, the optimal parameters and
their interaction effects are selected and the
mathematical equations are conformed for each
performance characteristic to suitable coefficients.
These coefficients are called model constant [15].

The mathematical model equations for MRR
and SR can be written here in the following form.
MRR=028+0.144+0.108+0.065C+0.010D+0.08348+0.0614D

+0.042BC +0.054BD-0.0394 -0.035C* +0.070D° 0)
SR=044+0154+0.158+0023C-0053D+0.454D+0.052BD-0.046D"  (4)
Fig 6: SEM Micrograph of Turned Surface

Obtained by Std Experiment No 1, Shows
Maximum MRR

08 KV

202



203

International Journal of Advance Research and Innovation, Vol 3(2), Apr-Jun 2015

Fig 7: SEM Micrograph of Turned Surface
Obtained by Std Experiment No 8, Shows
Minimum SR

EHT=1%
108yn

5.0 Multi-Objective  Optimization  Turning
Parameters Based on Desirability Function

Metal removal rate is an indicator for
productivity while surface finish accounts for process
economics, precision, and work quality. In turning
process, it is much desired to determine the optimal
machining  parameters  for  best  machining
performance. The performance indicators, viz. MRR,
SR are conflicting in nature as it is always desirable
to have higher MRR with a lower value of surface
roughness at the same time.

Due to the presence of a large number of
process variables and mutual interactions, the
selection of optimum machining parameter
combinations to obtain higher MRR and smaller SR
is a challenging task. Here, an attempt is made to
develop a strategy based on the concept of
desirability function for predicting the optimum
machining parameter settings generating maximum
MRR with minimum SR all at once.

The mathematical formulation of the present
optimization problem can be stated as follow:

Max: Fl1 (x) = MRR

Min: F2 (x) = SR

Subject to: 800 < x, < 3000
0.05< x,< 0.1
025< x,< 1
04<x,<12

Where, x1, x2, x3, and x4 represent the
process input parameters cutting speed, feed rate,
depth of cut and tool nose radius, respectively. It is a
fourvariable two-objective optimization statement,
each of which has been defined by respective second
order regression equations:

0<d <1

If the response vi is at its goal or target, then
di = 1 (the most desirable case), and if the response is
outside an acceptable region, di = 0 (the least
desirable case). There is also a positive number,
weight factor (r), associated with the desirability
function of each response defining its shape. If the
weight is chosen to be less than 1, then the sensitivity
of the desirability function is low with respect to the
optimal or target value sought for.

In other words, if the search algorithm finds
a point which is somehow far from the desired
optimum or target value, then the decrease in
desirability function value will be small in
comparison with its maximum amount (unity).

Choosing a weight factor higher than one,
has the reverse effect, and setting it to one, provides a
balanced or medium sensitivity with the shape of
desirability being linear.

The individual desirability functions are
defined according to the goal of optimization that is
maximization and minimization, respectively [17].

Table: 8. Constraints and Criteria of Input
Parameters and Responses

T
L[:m U [:'pe Lower |Upper
Name | Goal |Limit|Limit Wi‘gh W*'t‘gh Imp"e"t““‘
ASpee| s sl 1| 3
d range
BFeed| ™ loos|o1| 1 | 1 3
range
C:Dept| 1sm 025 | 1 1 | 3
hofcut| range
D:Nose| isin
Radivs| e | 04 [ 12] 1| ! 3
MRR ‘mxe‘mlz 0002 049 1 | 1 3
SR |minimize| 028 | 0.72] 1 | 1 3

Table 8 summarizes the key parameters set
to find global optimum settings including constraints
of input variables and that of responses™ requirements
while Table 9 sorts the first ten optimum settings
obtained, in descending order of composite
desirability (D). The closer the D to 1 the more
favorable are the turning conditions satisfying
problem requirements.
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Table 9: Iterative Determination of Optimum

Conditions

Solution Depth| Nose L Composte
Number Speed Feed of cut [R adius IEE| SE Du]:ﬂ;]]l:ult}'

) 2213.1670.060 1.000| 1.200 |0.35§0340 0.735

1 I1215.0070.061 0.06R| 1200 |0.363|0347] 0.7

3 2114.3310.064 08ET| 1.200 (03660353 0783

4 20800750060 0043 ( 1.200 G.Sjﬁjli 0.750

5 19796200071 0015|1200 [03700383) 0740

6  21487770.068 0.740( 1.200 (0377|0385 0735

T S76.086 0.050 1.000| 0.400 0.3390334 0.732

E 1732.BETO.050 1.000( 04535 |0.33H0388 06T
0 1051.0330.057 0.835| 0.900 [0.34g[0438] 0.a3s
10 20507070057 0.711] 0.400 |0.325)0440  0.605

Note: The row in italic is selected as the best
compromise solution

6.0 Confirmation Experiment

Conducting confirmation experiment is the
crucial, final, and indispensable part of every
optimization attempt. Its aim, after selecting the
optimal parameters, is to predict and verify the
improvement of the performance characteristics with
the selected optimal machining parameters, i.e. to
verify the optimum condition suggested by the matrix
experiment estimating how close the respective
predictions are with the real ones.

Table 10 summarizes the optimization
results along with experimentally obtained responses
and their percentage relative verification errors.

As is clear, the amounts of errors are all
found to be satisfactory in point of engineering
applications. Figure 8 shows the SEM micrograph
obtained from the confirmation experiment (solution
number 1 in Table 9) in which optimal machining
parameters are chosen during the turning.

Table: 10. Multi-Response Optimal Points and
Experimental Validation

Optimmum input MRR SR (um) Relati
setting (g/sec) ve
error
(%)
C Fee D ~N Pre Expe Pre Expe Y S s
utt d e os dic rime dic rime R R
in rate pt e ted ntal ted ntal R C
= (m h ra (= n
sp m/ of d1 /s m
ee i [ us ec p]

Methodology-Desirability Function Approach

d n) ut | ( )
(r ( |m
P m | m
m) m | )
)
22 0.0 1 1 0.3 0.34 0.3 0.37 5. 8.
13 | 6 2 58 4 29 |1

Fig 8: SEM Micrograph of Turned Surface
Obtained from Confirmation Experiment

EHT=15.99 KV W= 28

100N et

Photo No, =381

7.0 Conclusions

This paper presents the findings of an
experimental investigation of the effect of cutting
speed, feed rate, depth of cut and nose radius on
material removal rate and surface roughness in hard
turning of H13 tool steel using coated ceramic tool
and following conclusions are drawn.

1. Quadratic model is fitted for material removal
rate and surface roughness.

2. Tool nose radius has no significant effect on
material removal rate.

3. MRR model: the depth of cut is most significant
factor whereas cutting speed and feed rate have a
secondary and tertiary contribution in the model.

4. SR model: the feed is most significant factor
whereas cutting speed and nose radius have a
secondary and tertiary contribution in the model.

5. 3-D response surfaces and contour plots are used
for selecting the cutting parameters for providing
the given desired material removal rate and
surface roughness.

6. Percentage error in the experimental and
predicted results obtained for MMR and SR is
5.29% and 8.81% which is acceptable for MRR
and SR model. Hence, desirability function
approach is an appropriate multi-objective
optimization technique to determine optimal
cutting parameters.
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