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ABSTRACT 

 

In the present study, an attempt has been made to investigate the effect of machining parameters (cutting speed, 

feed rate, depth of cut and tool nose radius) on material removal rate and surface roughness in finish hard 

turning of H13 tool steel using carbide tool. The machining experiments were conducted based on response 

surface methodology (RSM) using face centered central composite design. A comprehensive analysis of 

variance (ANOVA) was used to fully identify the most influential parameters, and the adequacy of both fitted 

second order regression models were checked. 3D response surfaces and 2D contour plots were analyzed to 

completely observe the impact of combinatory different important interactive factors on the machinability 

behaviour under different turning conditions. The MRR and SR increase by increasing the cutting speed, feed 

rate and depth of cut. The depth of cut and feed rate are the most influential factors for increasing the MRR and 

SR respectively. Mathematical models for MRR and SR were developed by using Design Expert-9 software. 

Finally, a multi-objective optimization technique based on the use of desirability function (DF) technique was 

then applied to find optimal combinations of input machining parameters capable of producing the highest 

possible amount of MRR and lowest amounts of SR within process domain. The obtained predicted optimal 

results were then verified experimentally to compute confirmation errors. The values of relative validation 

errors, all being found to be quite satisfactory, 5.29% for MRR and 8.1% for SR, proves the efficacy and 

reliability of suggested approach. 

 

Keywords: Analysis of Variance (ANOVA), Desirability Function (DF); Face centered Central (FCC) 

Composite Design; Multi-Objective Optimization; Response Surface Methodology (RSM). 

 

1.0 Introduction 
 

 The economy of any country mainly 

depends on growth of its manufacturing industries. 

Hence, enhancement in manufacturing technology, 

especially machining of hardened steel has been 

revolutionized many branches of industry such as 

automotive, die and mould sectors. The application of 

hard turning has been proved extremely advantageous 

in producing bearings, gears, cams, shafts, axels, and 

other mechanical components since the early 1980s 

[4]. In turning operation, material removal rate and 

the quality of the surface finish are important 

requirement for many turned workpieces. Material 

removal process initiates structural changes to the 

surface of a workpiece. This metallurgical 

transformation on the surface occurs due to intense 

thermal energy produced during turning which 

enhance the chemical interaction of surface with 

environment. The characteristics of worked surface 

may exhibit a vast difference compared to that of the 

bulk of the material. Thus, the selection of optimum 

machining parameters is very important in controlling 

quality [1, 2].  

 

2.0 Review of Previous Work  
 

In the current scenario, the most effective machining 

approach is determined by investigating the different 

parameters affecting turning process and seeking 

different ways of obtaining the optimal machining 

condition and performance. M. Thomas and Y. 

Beauchamp used full factorial experimental design in 

which 288 experiment have been conducted on 

turning process, which investigated the optimum 

cutting parameters (cutting speed, feed rate, depth of 

cut and nose radius) on cutting force, tool vibration 

and surface roughness. The results investigated  
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through ANOVA revealed that steady cutting forces 

depend mainly on depth of cut and feed rate. High 

cutting speed, a low feed rate, a large tool nose 

radius, and a low depth of cut are used for reducing 

vibration and increasing tool damping while low 

cutting speed helps to reduce the surface roughness 

by reducing the effect of built-up edge formation [1]. 

Meng Liu et al. experimentally investigated the effect 

of tool nose radius and tool wear on residual stress 

distribution in hard turning of bearing steel JIS SUJ2. 

In this study, three types of CBN tools with different 

nose radius 0.4, 0.8 and 1.2 mm were used. The 

results show that remarkable residual stress 

distribution affected by the tool nose radius [3]. 

Grzesik have used cutting tool of material mixed 

ceramics (aluminium oxide plus TiC or TiCN) for 

machining of hardened steel (HRC 50-65) under dry 

turning condition and moderate cutting speed ranging 

from 90 to120 m.min. This study revealed an 

extensive characterization of the surface roughness 

produced during hard turning (HT) operations 

performed with conventional and wiper ceramic tools 

at variable feed rate and its changes originated from 

tool wear [4]. G. Poulachon et al. performed hard 

turning operation on high strength alloy steel (45 ˂ 

HRC ˂ 65) using polycrystalline cubic boron nitride 

(PCBN) cutting tool in order to reach surface 

roughness close to those obtained in grinding 

operation. This study observed that flank wear of 

cutting tool has a large impact on the quality of 

machined parts namely surface finish, geometry 

accuracy and surface integrity [5]. D.I. Lalwani et al. 

has been investigated the effect of machining 

parameters namely cutting speed, feed rate and depth 

of cut on cutting force and surface roughness in hard 

turning of MDN 250 using coated ceramic tool using 

response surface methodology (RSM) experimental 

approach. The results indicate that cutting forces and 

surface roughness do not vary much with cutting 

speed in the range of 55–93 m/min [6]. H. 

Bouchelaghem et al. has been investigated the wear 

test on the CBN tool during hard turning of AISI D3 

(60 HRC). The quality of surface finish, cutting 

forces and temperature has been studied according to 

the cutting parameters (cutting speed, feed, depth of 

cut) and tool wear. The feed rate is the most affecting 

factor on the roughness values. The proposed 

statistical models are based on the response surface 

methodology correlating the cutting parameters 

together with roughness, cutting forces and tool life 

[7]. J.A. Arsecularatne et al. investigated the 

machining through dry turning of AISI D2 steel of 

hardness 62 HRC with PCBN tools. The results show 

that the most feasible feeds and speeds fall in the 

ranges 0.08–0.20 mm/rev and 70–120 m/min, 

respectively while the highest feed used resulted in 

the highest volume of material removal, lower feeds 

resulted in higher tool life values [8]. Li Qian, 

Mohammad Robiul Hossan have been studied the 

finish hard-turning operation on of AISI 52100 

bearing steel, AISI H13 hot work tool steel, AISI D2 

cold work steel, and AISI 4340 low alloy steel as a 

function of cutting speed, feed, cutter geometry, and 

workpiece hardness. Cubic boron nitride (CBN) or 

polycrystalline (PCBN) inserts are used as cutting 

tool materials for high speed machining. Among 

process parameters, cutter geometry and workpiece 

hardness, the feed has the most significant effect on 

cutting and feed forces while Cutting force and feed 

force increase with increasing feed, tool edge radius, 

negative rake angle, and workpiece hardness [9]. 

Tongchao Ding et al. investigated the effects of 

machining parameters on cutting forces and surface 

roughness in hard milling of AISI H13 steel with 

coated carbide tools. Taguchi‟s four-level orthogonal 

array was used for the experimentation with four 

machining parameters namely cutting speed, feed, 

radial depth of cut and axial depth of cut. Surface 

roughness under optimal machining parameters is less 

than 0.25 μm, which proves that finish hard milling is 

an alternative machining route to grinding process in 

die and mold industry [10]. Tug˘rul O¨ zel and Yig˘it 

Karpat have been experimentally investigated the 

effects of cutting edge geometry, workpiece hardness, 

feed rate and cutting speed on surface roughness and 

tool wear in the finish dry hard turning of AISI H13 

steel using Cubic Boron Nitride (CBN) tools. Neural 

network model and regression models were 

developed to predict surface roughness and tool flank 

wear over the machining time for variety of cutting 

conditions in finish hard turning. The results show 

that better surface roughness but slightly faster tool 

wear is obtained by decreasing feed rate and 

increasing cutting speed [11]. Reginaldo T. Coelho et 

al. showed the results of tool wear, cutting force and 

surface finish obtained from the turning operation on 

hardened AISI 4340 using PCBN coated and 

uncoated edges. The experiments were conducted 

with three different coatings on tool for finishing 

conditions: TiAlN, TiAlN-nanocoating and AlCrN 

and result showed that TiAlN-nanocoating performed 

better in terms of tool wear and surface roughness 

[12]. D. Philip Selvaraj et al. carried out dry turning 

operation on two different grades of nitrogen alloyed 

duplex stainless steel with TiC and TiCN coated 

carbide cutting tool inserts. The experiments were 

conducted at three different cutting speeds (80, 100 

and 120 m/min) with three different feed rates (0.04, 

0.08 and 0.12 mm/rev) and a constant depth of cut 

(0.5 mm). The machining parameters are optimized 

using signal to noise ratio and the analysis of 

variance. The results showed that the feed rate is the 

more significant parameter influencing the surface 

roughness and cutting force. The cutting speed was 
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 observed as the more significant parameter 

influencing the tool wear [13].  

 The literature review above indicates that 

most of the studies have been concentrated on AISI 

H-13 tool steel and other types of steels. In recent 

years, along with other types of steels, AISI H-13 tool 

steel has also emerged as an important material for 

industrial applications. Despite extensive research on 

dry turning process, determining the desirable 

operating conditions during dry turning of H-13 tool 

steel, in industrial setting, still relies on the skill of 

the operators and trial-and-error methods. So, the 

determination of the parametric settings that can 

simultaneously optimize multiple responses of dry 

turning of this material is an important issue to the 

engineers. Therefore, it is imperative to develop a 

suitable technology guideline for optimum machining 

conditions for dry turning of AISI H-13 tool steel. In 

addition to this, researchers have usually preferred to 

apply neural network and GRA-based approaches for 

optimizing the multiple responses of turning process 

although there exist some other easily 

comprehendible and computationally simple 

approaches for multi-response optimization. So, the 

aim of the present work is to obtain the optimum 

machining conditions for dry turning operation of 

AISI H-13 tool steel using coated ceramic tool for 

maximum material removal rate and maximum 

surface finish based on the use of desirability function 

(DF) approach. Experiments, based on central 

composite design of response surface methodology 

(RSM), were carried out to study the effect of various 

parameters, viz. cutting speed, feed rate, depth of cut 

and tool nose radius, on material removal rate and 

surface finish. From the experimental data, multiple 

regression models for the MRR and surface finish are 

obtained in the present work.  

 

3.0 Experimentation  
 

3.1 Materials, machine tool and measurement  
The distinguishing feature of this steel is 

superior toughness compared to other hardened 

steels. This steel typically has very high vanadium, 

nickel, carbon, manganese contents which give it 

superior mechanical properties such as high wear 

resistance, high machinability, high grindability, and 

very low distortion during heat treatment, high 

resistance of decarburization etc.  

Table 1 indicates the chemical composition 

of H13 steel. Typical applications of H13 tool steel 

are to make aluminium Extrusion Dies, Die Casting 

Dies, Heavy Duty Compression Tools, Forming 

Punches, Hot Forging Dies, Shear Blades, Plastic 

Mold Dies, and Bolt Dies. Bars of T6 H13 steel, 22 

mm in diameter and 250mm in length were used in 

the study. The hardness was obtained as 55.0±0.5 

HRC. The chemical compositions and mechanical 

properties of H13 steel as received are given in 

Tables 1 and 2, respectively. 

 

Fig 1: Photographic View of CNC Lathe Machine 

 

 
 

Table 1: Chemical Composition of H13 Tool Steel 

 

 
 

Table 2: Mechanical Properties of H13 Tool Steel 

 

 
 

 Carbide inserts chamfered (25° ×0.1mm) 

TNMA160408S01525 were used in the experimental 

work mounted on PSBNR2525K12 tool holder. The 

tool angles are as follows: back rake angle = −5°, side 

rake angle= −5°, principal cutting edge angle= 92°, 

end cutting edge angle = 27°. Rigid, high speed 

precision CNC Turning Center STALLION 100 

HD/100 SU (HMT, India) lathe equipped with speed 

range 100-3000 rpm was used for experimentation. 

For improving the machining performance, 

workpiece material was placed between chuck (three 

jaws) and tailstock and the tool overhang was kept at 

the minimum possible value of 20 mm. The two most 

crucial performance measures in dry turning are 

metal removal rate and workpiece surface roughness. 

The material removal rate (g/min) was calculated by 

weight difference of the specimen before and after 

machining using high-precision balance. The surface 

roughness was measured with Talysurf-6 at three 

different locations on the workpiece after machining  
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and the average value has been taken in the present 

study [15]. 

 

3.2 Response surface methodology  
 RSM is a collection of mathematical and 

statistical techniques that are useful for the modeling 

and analysis of problems in which a response of 

interest is influenced by several variables and the goal 

is to optimize this response (Montgomery, 1997). 

RSM also computes relationships among one or more 

measured responses and the essential input factors. 

RSM was applied to model and optimize the dry 

turning process. The Design Expert 9 software was 

used to analyze [14] and develop the regression 

model for the responses. Face-centered central 

composite design (CCD) has been employed to 

conduct the experiments. It is a sort of second order 

design set which employ three levels for each design 

parameter and can efficiently handle linear, quadratic 

as well as interaction terms in process modelling.  

 In order to observe the effects of the turning 

factors, a second-order polynomial response surface 

mathematical model has been considered to evaluate 

the parametric effects on MRR and surface roughness 

machining criteria: 

 
 Where X1, X2, X3 denote the input 

parameters cutting speed, feed rate, radial depth of 

cut and tool nose radius; y(MRR) and y(SR) indicate 

the response variable namely material removal rate 

and surface roughness respectively. The terms α, β 

are the second-order regression coefficients. The 

method of least squares was employed to determine 

the coefficients of the polynomials. The second term 

under the summation sign of this polynomial equation 

is attributable to linear effect; whereas the third term 

corresponds to the higher-order effect; the fourth term 

of the equation includes the interactive effects of the 

machining parameters [14].  

 

3.3 Experimental Plan Procedure  
 The levels of machining parameters namely 

cutting speed, feed rate, depth of cut and tool nose 

radius were selected with the help of machine 

manual, machine expert and performing the pilot test 

on a CNC Lathe machine. The rest of the parameters 

are adjusted automatically by the machine itself. A 

pilot experimentation using one-factor-at-a-time 

approach was conducted to identify feasible ranges of 

machining parameters. On the basis of pilot 

experimentation, the ranges and subsequently the 

levels of the machining parameters were selected as 

shown in Table 3 [16]. The levels of machining 

parameters namely cutting speed, feed rate, depth of 

cut and tool nose radius were selected with the help 

of machine manual, machine expert and performing 

the pilot test on a CNC Lathe machine. The rest of the 

parameters are adjusted automatically by the machine 

itself. A pilot experimentation using one-factor-at-a-

time approach was conducted to identify feasible 

ranges of machining parameters. On the basis of pilot 

experimentation, the ranges and subsequently the 

levels of the machining parameters were chosen (in 

Table 1) [16]. Twenty one experiments are performed 

on the bases of standard table obtained from the help 

of Design-Expert 9 software. Table 4 shows complete 

design matrix with responses namely material 

removal rate and surface finish. The experiments 

were conducted randomly as shown in design matrix 

(„std‟ column in Table 4). 

 

Table 3: Machining Parameters and Their Levels 

 

 
 

4.0 Results and Discussion  
 

 The first step in data analysis of the present 

study is to summarize the test results for each 

experiment performed by the using response surface 

methodology. Table 4 shows all values of material 

removal rate and surface roughness obtained through 

the experiment. The material removal rate and surface 

roughness was obtained in the range of 0.1 gm/sec to 

0.49 gm/sec and 0.28 μm to 0.72 μm, respectively. 

 

Table: 4. Design Matrix with Responses 
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Fig 2: Variation of MRR with Speed, Feed, Depth 

of Cut and Tool Nose Radius 

 

 
 

Fig 3: Variation of SR with Speed, Feed, Depth of 

Cut and Tool Nose 

 

 
 

Fig 4: Fitted Response Surface and Contour Plot 

for MRR Model 

 

 

Fig 5: Fitted Response Surface and Contour Plot 

for SR Model 

 

 

 
 

 Fig. 2 shows the variation of MRR with 

cutting parameters. It can be seen that, MRR 

continuously increases with increasing the values of 

cutting speed, feed rate and depth of cut.  

 Fig. 3 shows the 3 D fitted response surfaces 

and contour plots for MRR. Contour plot of cutting 

speed v/s feed indicates that at constant value of 

0.625 mm depth of cut and 0.8 mm tool nose radius, 

MRR increases with simultaneously increasing the 

values of cutting speed and feed rate. Maximum 

value of MRR in contour plot is predicted 0.5 gm/sec 

at 3000 rpm cutting speed and 0.1 feed rate, seen by 

red colour.  

 Contour plot of feed and depth of cut 

revealed that at fixed values of 1900 rpm and 0.8 mm 

tool nose radius, MRR increases with continuously 

increasing the values of feed and depth of cut. 

Maximum value of MRR in contour plot is predicted 

0.369 gm/sec at maximum values of feed and depth 

of cut. Contour plot of speed and nose radius at fixed 

vales of feed (0.075 mm) and depth of cut (0.625 

mm) indicates curvilinear nature of MMR.  

 Higher value of MRR (0.468 gm/sec) is 

achieved at the upper right region of contour plot area 

indicated by red colour where cutting speed and nose  
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radius is at its maximum value. Contour plot between 

feed and nose radius, when speed 1900 rpm and depth 

of cut 0.625 mm are constant , also indicates 

quadratic nature curve of MMR.  

 Higher value of MRR (0.46 gm/sec) is 

achieved at the upper right region of contour plot area 

indicated by red colour where feed and nose radius is 

at its maximum value. The response graphs (Fig 2 

and Fig 3) suggest that the factors at levels A3, B3, 

C3 and D2 are the best levels that give the maximum 

MRR. Similarly, the factors at levels A1, B1, C1and 

D3 are the best levels that give minimum surface 

roughness.  

 Fig. 3 shows the variation of SR with cutting 

parameters. It can be seen that, SR continuously 

increases with increasing the values of cutting speed, 

feed rate and depth of cut. Fig.3 indicates that the 

maximum slop of the curve SR v/s feed rate, hence, 

increment of surface roughness mainly depends on 

the feed rate. SR decreases with increasing the tool 

nose radius.  

 Fig. 5 shows the 3 D fitted response surfaces 

and contour plots for SR. Contour plot of cutting 

speed v/s nose radius indicates that at constant value 

of 0.075 mm feed and 0.625 mm depth of cut, SR 

decreases with simultaneously decreasing the values 

of cutting speed and tool nose radius.  

 Minimum value of SR in the contour plot is 

predicted 0.25μm at the upper left region of contour 

plot area indicated by blue colour where speed is at 

its minimum value while tool nose radius is at its 

maximum value. Contour plot of feed v/s nose radius 

indicates that at constant value of 1900 rpm speed 

and 0.625 mm depth of cut, SR decreases with 

simultaneously decreasing the values of feed and tool 

nose radius. 

 Contour plots of speed v/s nose radius and 

feed v/s nose radius indicate quadratic nature curve of 

SR.  

 Analysis of variance (ANOVA) is a 

statistically based objective decision-making tool for 

detecting any differences in average performance of 

groups of items tested (Ross, 1988). ANOVA is 

performed to identify the process parameters of wire-

EDM that significantly affect the multiple 

performance characteristics.  

 An ANOVA table consists of sums of 

squares, corresponding degree of freedom, the F-ratio 

corresponding to the ratios of two mean squares, and 

the contribution proportions from each of the control 

factors [16].  

 The experimental results were analyzed in 

Design Expert-9 software. The results of experiments 

in the form of ANOVA are present in table 5.  

 An ANOVA summary table is commonly 

used to summarize the test of the regression model, 

test of the significance factors and their interaction 

and lack-of-fit test. If the value of „Prob > F‟ in 

ANOVA table is less than 0.05 then the model, the 

factors, interaction of factors are said to be significant 

[7]. 

 

Table 5- ANOVA (Partial Sum of Square) for 

Material Removal Rate 
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 Table 5 shows that the model is significant 

for MRR and cutting speed (A), feed rate (B) depth of 

cut (C), AB, AD, BC, BD, A2, C2, D2 are only the 

significant factors (terms). All other terms are 

insignificant. By selecting the significant terms, the 

resulting ANOVA table for reduced MRR model is 

shown in Table 6. Table 7 shows that the model is 

significant for SR and cutting speed (A), feed rate (B) 

depth of cut (C), AD, BD, D2 are only the significant 

factors (terms).  

 All other terms are insignificant. By 

selecting the significant terms, the resulting ANOVA 

table for reduced SR model is shown in Table 8. The 

lack-of-fit is insignificant for both MRR and SR 

models thereby indicate that the models fit well with 

the experimental data. Depth of cut is the most 

dominant factor to MRR because of having highest F 

value (256.04) and feed rate has little influence on 

MRR of tool steel. Feed rate is the most dominant 

factor to SR because of having highest F value 

(42.81) and depth of cut has little influence on SR.  

 The various R2 statistics (i.e. R2, adjusted 

R2 ( ) and predicted R2 ( ) of MRR and SR are given 

in Tables 6 and 8. The value of R2 = 0.9940 for MRR 

indicates that 99.40% of the total variations are 

explained by the model. The adjusted R2 is a statistic 

that is adjusted for the “size” of the model; that is, the 

number of factors (terms).  

 The value of the = 0.9866 indicates that 

98.66% of the total variability is explained by the 

model after considering the significant factors. = 

0.9704 is in good agreement with the and shows that 

the model would be expected to explain 97.04% of 

the variability in new data (Montgomery, 2001). 

„C.V.‟ stands for the coefficient of variation of the 

model and it is the error expressed as a percentage of 

the mean ((S.D./Mean)×100). Lower value of the 

coefficient of variation (C.V. = 4.66 %) indicates 

improved precision and reliability of the conducted 

experiments.  

 The value of R2 = 0.9530 for SR indicates 

that 95.30% of the total variations are explained by 

the model. The value of the = 0.9277 indicates that 

92.77% of the total variability is explained by the SR 

model after considering the significant factors. = 

0.8930 is in good agreement with and shows that the 

model would be expected to explain 89.30% of the 

variability in new data. Lower value of the coefficient 

of variation (C.V. = 7.34 %) indicates improved 

precision and reliability of the conducted 

experiments. The surface micrograph after machining 

obtained through scanning electron microscopy 

(SEM) for maximum MRR and minimum SR are 

shown in Figures 6 and 7.  

 In any machining process, a mathematical 

model has to be developed, relating the machining 

output to the machined parameters and used for 

prediction, process control or optimization. In order 

to evaluate the effect of cutting parameters of turning 

process in terms of cutting performance such as 

surface finish of the machined workpiece and the 

amount of material removed, Design Expert-9 

software was applied to model the turning process. 

Based on the analysis, the optimal parameters and 

their interaction effects are selected and the 

mathematical equations are conformed for each 

performance characteristic to suitable coefficients. 

These coefficients are called model constant [15].  

 The mathematical model equations for MRR 

and SR can be written here in the following form. 

 
 

Fig 6: SEM Micrograph of Turned Surface 

Obtained by Std Experiment No 1, Shows 

Maximum MRR 
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Fig 7: SEM Micrograph of Turned Surface 

Obtained by Std Experiment No 8, Shows 

Minimum SR 

 

 
 

5.0 Multi-Objective Optimization Turning 

Parameters Based on Desirability Function  
 

 Metal removal rate is an indicator for 

productivity while surface finish accounts for process 

economics, precision, and work quality. In turning 

process, it is much desired to determine the optimal 

machining parameters for best machining 

performance. The performance indicators, viz. MRR, 

SR are conflicting in nature as it is always desirable 

to have higher MRR with a lower value of surface 

roughness at the same time. 

 Due to the presence of a large number of 

process variables and mutual interactions, the 

selection of optimum machining parameter 

combinations to obtain higher MRR and smaller SR 

is a challenging task. Here, an attempt is made to 

develop a strategy based on the concept of 

desirability function for predicting the optimum 

machining parameter settings generating maximum 

MRR with minimum SR all at once.  

 The mathematical formulation of the present 

optimization problem can be stated as follow: 

 
 Where, x1, x2, x3, and x4 represent the 

process input parameters cutting speed, feed rate, 

depth of cut and tool nose radius, respectively. It is a 

fourvariable two-objective optimization statement, 

each of which has been defined by respective second 

order regression equations:  

 
 If the response yi is at its goal or target, then 

di = 1 (the most desirable case), and if the response is 

outside an acceptable region, di = 0 (the least 

desirable case). There is also a positive number, 

weight factor (r), associated with the desirability 

function of each response defining its shape. If the 

weight is chosen to be less than 1, then the sensitivity 

of the desirability function is low with respect to the 

optimal or target value sought for.  

 In other words, if the search algorithm finds 

a point which is somehow far from the desired 

optimum or target value, then the decrease in 

desirability function value will be small in 

comparison with its maximum amount (unity). 

 Choosing a weight factor higher than one, 

has the reverse effect, and setting it to one, provides a 

balanced or medium sensitivity with the shape of 

desirability being linear.  

 The individual desirability functions are 

defined according to the goal of optimization that is 

maximization and minimization, respectively [17]. 

 

Table: 8. Constraints and Criteria of Input 

Parameters and Responses 

 

 
 

 Table 8 summarizes the key parameters set 

to find global optimum settings including constraints 

of input variables and that of responses‟ requirements 

while Table 9 sorts the first ten optimum settings 

obtained, in descending order of composite 

desirability (D). The closer the D to 1 the more 

favorable are the turning conditions satisfying 

problem requirements. 
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Table 9: Iterative Determination of Optimum 

Conditions 

 

 
Note: The row in italic is selected as the best 

compromise solution 

 

6.0 Confirmation Experiment  
 

 Conducting confirmation experiment is the 

crucial, final, and indispensable part of every 

optimization attempt. Its aim, after selecting the 

optimal parameters, is to predict and verify the 

improvement of the performance characteristics with 

the selected optimal machining parameters, i.e. to 

verify the optimum condition suggested by the matrix 

experiment estimating how close the respective 

predictions are with the real ones.  

 Table 10 summarizes the optimization 

results along with experimentally obtained responses 

and their percentage relative verification errors.  

 As is clear, the amounts of errors are all 

found to be satisfactory in point of engineering 

applications. Figure 8 shows the SEM micrograph 

obtained from the confirmation experiment (solution 

number 1 in Table 9) in which optimal machining 

parameters are chosen during the turning.  

 

Table: 10. Multi-Response Optimal Points and 

Experimental Validation 

 

 

 
 

Fig 8: SEM Micrograph of Turned Surface 

Obtained from Confirmation Experiment 

 

 
 

7.0 Conclusions  
 

 This paper presents the findings of an 

experimental investigation of the effect of cutting 

speed, feed rate, depth of cut and nose radius on 

material removal rate and surface roughness in hard 

turning of H13 tool steel using coated ceramic tool 

and following conclusions are drawn.  

1. Quadratic model is fitted for material removal 

rate and surface roughness.  

2. Tool nose radius has no significant effect on 

material removal rate.  

3. MRR model: the depth of cut is most significant 

factor whereas cutting speed and feed rate have a 

secondary and tertiary contribution in the model.  

4. SR model: the feed is most significant factor 

whereas cutting speed and nose radius have a 

secondary and tertiary contribution in the model.  

5. 3-D response surfaces and contour plots are used 

for selecting the cutting parameters for providing 

the given desired material removal rate and 

surface roughness.  

6. Percentage error in the experimental and 

predicted results obtained for MMR and SR is 

5.29% and 8.81% which is acceptable for MRR 

and SR model. Hence, desirability function 

approach is an appropriate multi-objective 

optimization technique to determine optimal 

cutting parameters. 
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