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ABSTRACT 

 

Plastic deformation of metal parts has been a matter of concern for investigators in academia, industry and 

research institutions all over the world. Literature reveals that earlier researchers have applied efforts for 

predicting plastic deformations using mesh based approach. A truly meshless formulation for rigid plastic 

analysis of metal parts has been developed in the present study for both plane stress and plane strain cases. In 

the present formulation, the governing equations are obtained for different set of scattered nodes over the 

problem domain and the integral equation for rigid plastic behavior is obtained through weak form over a local 

sub-domain. The meshless solution functions are obtained for different set of scattered nodes through moving 

least square technique. Essential boundary conditions are enforced through Penalty approach. The rigid plastic 

constitutive relationships incorporate only small deformation. Material constitutive relationship include Von-

Mises yield criterion with rate independent associative flow theory. The solution algorithm for rigid plastic 

analysis of metal parts using meshless approach is discussed in the present work. Numerical results have been 

computed through two test functions using both linear and quadratic basis function which shows that presented 

formulation is accurate and robust for carrying out the rigid plastic analysis of metal parts. 

 

Keywords: Meshless Method; Rigid Plastic; Perfect Plastic; Truly Meshless; Meshless Local Petrov Galerkin 

Method. 

 

1.0 Introduction 

 

Plastic deformation of metal parts has been a 

vital activity in the area of solid mechanics and has 

been carried out all over the world. Numerous 

techniques were used to find plastic deformation of 

metal parts and most popular technique is Finite 

Element Methods (FEM) till last decade. The 

meshless method possesses numerous merits over the 

FEM as stated by many researchers [1], [2], [3], [4], 

[5], [6], [7], [8], [9], [10]. Most of the pioneer’s 

working in the area of meshless methods criticize 

FEM which motivated the others researchers to 

alleviate the problems arising due to mesh. 

Continuous efforts of these researchers inspired 

others to use some good features of FEM and they 

started generating system equations over the nodes in 

spite of element/mesh. The major progress towards 

the development of meshless methods started after 

the introduction of Diffuse Element Method (DEM) 

as reported by Nayroles in 1992 [11]. Later on, many 

meshless methods were reported in literature but the 

methods are called although meshless but they are not 

truly meshless. They somehow need mesh either for 

interpolation or for integration purpose. But due to 

the elimination of mesh requirement, the so called 

meshless methods became cheap and flexible. Their 

flexibility extends further if the methods become 

truly meshless. Messless Local Petrov Galerkin 

(MLPG) method, Local Boundary Integral Equation 

(LBIE) method, Point Weighted Least Squares 

(PWLS) methods are reported as truly meshless 

methods as they do not need any mesh either for 

interpolation or for integration purpose. 

In the last decade, truly meshless methods 

have been successfully implemented to solve 

numerous engineering and science problems as 

reported by Sladek [12]. M. H. Kagarnovin at el 

reported to implement element free Galerkin method 

for elasto-plastic stress analysis around a crack tip 

[13]. Y. T. Gu implement the local meshless 

approach for solving elasto-plastic analysis of solid 

using total deformation theory [14]. Y. P. Chen et al 

implemented meshless approach for rate independent 

large strain plasticity problem under high speed 

impact and contact situation [15]. Jianfeng Ma at el 
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applied Meshless integral approach to solve 

elastoplastic small deformation problem [16]. But in 

literature, the perfect plastic analysis through truly 

meshless method were not found addressed and the 

aim of the present work is to explore the 

implementation of truly Meshless method for 

carrying out perfect plastic analysis of metal parts. In 

this regard a relationship between the nodes over the 

domain and value of field variable is required to be 

built for which moving least square technique is used. 

And the moving least square scheme can be referred/ 

presented as under. 

 

2.0 The Moving Least Square Approximation 

(MLS) 

 

In meshless methods the algebraic system 

equations are established without predefining the 

mesh over the whole problem domain. In this 

meshless method nodes are spotted over the whole 

problem domain and boundary and at these points the 

value of the field variable is required to be calculated. 

A relationship between the spotted nodes over the 

domain and boundary and value of field variable is 

required to be built. Some technique is needed that 

can approximate the value of field variable at these 

spotted nodes. There are a number of techniques 

available in literature viz.  

Shepard function after Donald Shepard in 1968 

[17], in 1981 Peter Lancaster and K. Salkaushas [18] 

generalize the Shepard function and introduced 

Moving Least Squares Method, in 1997 Babuska and 

Melenk reported Partition of Unity Method [19], Liu, 

Chang in 1996 presented Reproducing Kernel particle 

method [20], in 1995 Robert Schaback introduced 

Compactly Supported Radial Basis Function [21] and 

some other methods that establish the relationship are 

also available in literature. Some of the interpolation 

techniques are compared by K.Y. Lam at el 22]. In 

order to make the current meshless formulation 

general, the approximation scheme ought to have 

high computational accuracy, low computational cost, 

computationally easy to implement and extend to 

multidimensional problems [23, 24]. The moving 

least squares (MLS) approximation may be one of 

such schemes that fulfill above requirements.  

Hence MLS approximation is used in the 

current implementation and it can be referred from 

[18], [3], [2]. 

3.0 Meshless for Mulation and Solution for Perfect 

Plastic Analysis of Metal Parts 

 

The perfect plastic analysis of metal parts 

having continuous domain D. and bounded by 

boundary L, can be performed using the following 

equilibrium equation 

 
Here a^ represents stress tensor, CJJJJ 

represents the partial derivative of stress tensor w.r.t. 

space coordinate, and bj represents body force acting 

on the deforming domain £1 The metal part problem 

domain is subjected to Dirichlet boundary conditions 

for the a
th

 node lying on the boundary Lf is uf = uf. 

The Neumann conditions comprises of ajjJVj
3
 = tf for 

the a
th

 node lying on Lf boundary portion of L 

boundary. For specifying the natural boundary 

condition, JVj
a
 represents the components of the local 

outward normal vector calculated for an arbitrary a
th 

node that lies on the Lt boundary. The local weak 

form of the equilibrium equation in present 

investigation, i.e. applicable to a small local domain 

bounded in the vicinity of a
th

 node, can therefore be 

written as 

 

Where,  represents quadrature sub-

domain of a
th

 node. This sub-domain can have 

arbitrary number of nodes, vf is a test function for a
th

 

node and it can theoretically be any function. And a is 

the penalty parameter used to enforce dirichlet 

boundary conditions as the shape function obtained 

through MLS approximation method do not satisfy 

Kronecker delta property. Here, Lqu represent the 

portion of the global boundary L where displacement 

boundary conditions are specified for a
th 

node. In 

order to obtain the weak form of Eq. (2), integration 

by parts i.e. Green’s theorem is used so as to shift the 

order of differentiation from stress term to test 

function and using Divergence theorem, the volume 

integral is converted into surface integral. The weak 

form of the equilibrium equation for a
th

 node can be 

expressed as 
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Here  represents quadrature/local sub-

domain boundary of a
th

 node, : represents the 

space derivative of 

is approximately equal to external applied load 

vector so that iteration process can be terminated. 

Here in the the test function defined for a
th

node. And 

JVj
a
 is the j

th 
component of the unit outward normal 

vector for a
th

 node having the boundary Lq. The term 

a^ M
a
 is known as traction vector at a

th
 point on the 

surface Lf, offered due to tf real force that acts on the 

surface Lqt. The boundary Lf, of the local quadrature 

domain fif, is now composed of Lqt Lqu &Lqi. 

Where Lqt represents the boundary of local 

quadrature domain where the traction force is acting 

on boundary portion Lf, of a
th

 node. Lqu represent the 

boundary portion Lf, of local quadrature domain 

where the displacement boundary conditions are 

specified for a
th

 node. Lqi represents the boundary of 

local quadrature domain which does not intersect 

with the global boundaries L i.e. the internal 

boundary of local quadrature domain. 

The local weak form of the equilibrium 

equation can therefore now be rewritten for a local 

quadrature domain of node a which is located within 

global domain D. and on global boundaries L i.e. 

 
Eq. (5) has become now valid for those nodes, 

over which some traction force is acting on some 

portion of global boundary and some displacement 

boundary conditions are specified on some portion of 

the global boundary.  

Eq. (5) therefore further reduces to Eq. (6) 

which is valid for all nodes whose local boundaries 

do not intersect with global boundaries in which 

integral term with internal quadrature boundary Lfj 

becomes zero because vf test function is chosen in 

such a way that its value is zero at the boundary. 

 
It is worthwhile to mention here that in the 

present formulation the integration is carried out over 

local quadrature sub-domains and if the whole 

problem domain is not covered then this formulation 

can generate numerical errors. In order to reduce such 

numerical errors, more accurate discretization of the 

problem is therefore required and due to this, the 

overlapping of sub-domains is allowed.  

The local weak form of equilibrium equation 

as given by Eq. (5) and (6) are valid for continuous 

local sub-domain space of a
th

 node.  

This way the continuous problem space is 

discretized into a finite N number of nodes. The 

discretized problem domain for the continuous 

problem space can now be written as a set of 

nonlinear equations that represents the whole problem 

domain. 

 
Here [K] is known as assembled stiffness 

matrix, {U} is known as global displacement field 

vector and {F} is known as global force vector. For 

solving this nonlinear eq. (7), the incremental 

iterative procedure with radial return method is used. 

For each iteration of loading step, the equilibrium is 

now checked whether the internal load vector present 

work for economy modified Newton Raphson scheme 

is applied.  

The next step is to write various quantities on 

to the disc for post processing purpose. 

In the above set of nonlinear equations, the 

contribution of a particular a
th

 field node within the 

deforming space can therefore be represented as 

 
Where [kf:] represents a

th
 nodal contribution to 

Global stiffness matrix and {f/
1
} represents the nodal 

force contribution to global force vector.  

This contribution includes the body forces 

applied at the problem domain of a
th

 node, traction 

force applied on boundary and penalty 

force term. Here  term represents the 

displacements caused in the adjacent b
th

 nodes when 

force is applied at a
th

node and adjacent b
th

 nodes lie 

within the influence domain of a
th

node. It is also to be 

noted here that the adjacent b
th

 nodes are variables 

and they vary from node number 1 to n. Where n, is 

total number of nodes within influence domain of 

a
th

node. The term  represents stiffness 

contribution of a particular a
th

 node to one of the 

specific adjacent b
th

 node within influence domain of 

a
th

 node. 
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For the particular a

th
 node that lies on or nearer 

to the boundary of global domain, the above local 

weak form of equilibrium equation after separating 

the known and unknown variables can now be written 

in discretized form as above 

 
Where adjacent b

th
 node is varying from 1 to n. 

Here n is total number of nodes within the influence 

domain of a
th

 node and [Dp] is perfect plastic material 

constitutive matrix in Eq. (9). Here [ 
a
] in Eq. (9) 

represents the unit outward normal matrix for a
th

 field 

node that lies on the boundary rq
a
 u. The unit outward 

normal matrix 

 
Where x & y represents the normal vector 

components along x and y direction respectively at a
th

 

node point that lies on the boundary Γq
a
 u. Similarly 

above equations can therefore be obtained for a
th

 field 

node that lie 

entirely within global domain and their local 

quadrature domain do not intersect with global 

boundary. 

 

4.0 Rigid Plastic Constitutive Relation 

 

In Eq. (9), the [Dp] matrix is required for 

solution and 

this matrix represents perfect plastic 

constitutive relation. According to incremental flow 

theory the perfect-plastic constitutive relation 

requires three conditions for establishing correct 

stress – strain relationship. They are flow rule, yield 

condition, loading and unloading condition. 

According to incremental flow theory for small 

deformation analysis of metal the total strain 

increment 

 
Eq. 13b is valid for [D] elastic deformation but 

for this evaluation plastic strain is required to be 

known and it must be a function of material. The 

incremental plastic strain magnitude and direction can 

be related to current stress state through flow rule. 

 
In Eq. (14) F is yield function and this 

modeling theory is popularly known as Associated 

Theory of Plasticity. 

Now applying the yield criterion to decide 

whether the material has yielded or not. The 

material’s behavior which is idealized as elastic-

perfectly plastic material is presented in Eq. (15) 

 
Here f represents yield function, Sij is 

deviatoric components of stresses, ae is effective 

stress and is assumed here equal to yi for perfect 

plastic case H = 0 i.e. (ae = y + Hsp). where H is 

hardening modulus and sp is effective plastic strain. It 

is important to note here that f is fixed as no 

hardening is considered. 

Now before substituting Eq. (15) into Eq. (14), 

it is to be checked whether state of stress lies on the 

yield surface. Such conditions are guaranteed by 

consistency conditions. These consistency conditions 

can be summarized as under and are sometimes 

referred as Kuhn-Tucker conditions 

 
The first condition in Eq. (16) states that 

plastic multiplier scalar cannot be negative; the 

second condition signifies that the state of stress at 

any point within the specimen can lie on or within the 

yield surface. The last condition states that during 

plastic deformation the state of stress always lies on 

the yield surface. 
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From Kuhn- Tucker 3rd condition that during 

plastic deformation when specimen is loaded or 

unloaded, a change in yield function occurs and it can 

mathematically be represented as 

 
Once the plastic deformation occurs then it is 

irrecoverable hence dX cannot be equal to zero so dF 

must be equal to zero. 

 

 
Note that Eq. (25) contains plastic multiplier 

and flow vector, however dλ is also a function of 

flow vector which makes Eq. (25) nonlinear and it 

incorporates only material nonlinear behavior which 

has been validated as under. 

 

5.0 Validation of Rigid Plastic Meshless 

Formulation: Results and Discussion 

 

Two case studies namely thick cylindrical 

pressure vessel subjected to internal pressure and an 

infinite plate with a circular hole subjected to 

continuously increasing traction along Y axis are 

presented for validation of above Meshless 

formulation. 

 

5.1. Case study of thick cylinder subjected to 

continuously increasing pressure 

The problem domain of long thick cylinder is 

discretized into 861 nodes with regular nodal 

distribution of 21x41 with . 
°
 along theta direction and 

0.25 units spacing in radial direction. The discretized 

geometry of thick cylinder subjected to continuously 

increasing pressure is presented through Figure. 1. 

Owing to symmetry in geometry and loading 

conditions only upper right segment of cylinder is 

modeled. The problem domain is modeled as plane 

strain. The internal radius of the cylinder is 5m and 

outer radius of the cylinder is 10m. The material of 

the cylinder has young’s modulus of 210.8 GPa, 

Poisson’s ratio of 0.3, yield strength of 0.2002 GPa 

and zero hardening modulus. The imposed boundary 

conditions for the quarter segment of thick cylinder 

comprises of displacement along X direction is 

restricted for the left face while this face is free to 

move along Y direction; the bottom face is restricted 

to move along Y direction and it has no restriction to 

move along X direction. The traction boundary 

conditions are specified on inner radius and no 

traction is specified on the outer radius of the 

cylinder. The problem is solved using Gaussian Test 

Function (GTF) both for linear basis function (LBF) 

and quadratic basis function (QBF). During testing, 

the internal pressure of the cylinder is increased from 

0 to 131.875 MPa in 5 load steps and the load steps 

are kept same as applied 

by Abaqus student version software. The 

initial yielding is observed at 115 MPa loading. 

 

Fig: 1. Discretized Geometry, Loading and 

Boundary Conditions of Cylinder 
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The comparison of Min. Principal Stress using 

Gaussian test function along Y=0 are represented 

through Fig.2a are with LBF and Fig.2b are with 

QBF. The comparison of Von Misses stresses 

distribution along Y=0 are represented through Fig.3a 

are with LBF and Fig.3b are with QBF. The spread of 

plastic zone as obtained from above presented 

formulation for different loading is presented for 

Gaussian Test Function are with LBF Fig.4a and 

Fig.4b is with QBF. 

 

Fig: 2a. Comparison of min. principal stress using 

GTF with LBF at 131.875MPa Internal Pressure 

 

 
 

Fig: 2b. Comparison of Min. Principal Stress Using 

GTF with QBF at 131.875MPa Internal Pressure 

 

 
 

Fig: 3a. Comparison of Von Mises Stress Using 

GTF with LBF at 131.875MPa Internal Pressure 

 

 

Fig: 3b. Comparison of Von Mises Stress Using 

GTF with QBF at 131.875MPa Internal Pressure 

 

 
 

Fig: 4a. Spreading of Plastic Strain Using GTF 

with LBF at 131.875MPa Internal Pressure 

 

 
 

Fig: 4b. Spreading of Plastic Strain Using GTF 

with QBF at 131.875MPa Internal Pressure 

 

 
 

The undeformed and deformed shape is 

compared for 131.875 MPa internal pressure and are 

represented through Fig.5a with LBF and Fig.5b with 

QBF. In these figures the dot represents undeformed 

geometry; diamond represents deformed geometry 

obtained through meshless formulation while triangle  
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represents deformed geometry obtained through FEM 

based Abaqus student version software. 

 

Fig: 5a. Comparison of Deformed Meshless Model 

Using GTF and LBF at 131.875MPa Internal 

Pressure 

 

 
 

Fig: 5b. Comparison of Deformed Meshless Model 

Using GTF and QBF at 131.875MPa Internal 

Pressure 

 

 
 

It can be observed from the above presented 

results when compared the results obtained through 

FEM based that meshless computational results are in 

good agreement Abaqus student version software. 

 

5.2. Case study of infinite plate with central 

circular hole subjected to continuously increasing 

traction along Y axis 

An infinite plate with a central circular hole 

subjected to normal traction along top and bottom is 

considered here for validating the presented 

formulation. Owing to symmetry in geometry and 

loading condition, only right upper quadrant is 

considered here as shown in Fig. 6. The plate is 50 m 

long and 50 m wide with 5m radius of hole. The 

quarter plate model is discretized with 863 nodes 

through Abaqus student version software and the 

same nodal data is used for validating current 

meshless formulation. The boundary conditions 

enforced over the quarter segment is presented in 

Fig.6. The Dirichlet boundary conditions are enforced 

over the left face and bottom face of the quarter 

segment. The left face is restrained along X direction 

while bottom face is restrained along Y direction. The 

left face is free to move along Y direction while the 

bottom face is free to move along X direction. The 

Neumann boundary condition is applied on the top 

face of quarter section along Y direction. The right 

face is a free boundary. The material properties of the 

test plate having young’s modulus of 210.83 GPa, 

Poisson’s ratio of 0.3, yield strength of 0.2002 GPa 

and hardening modulus is 0 GPa. During the testing 

the uniform normal traction along Y axis is increased 

from 0 to 154.375 MPa in 7 load steps.  

The load steps are same as applied by Abaqus 

student version software. This problem is solved for 

Spline Test Function (STF) both with linear basis 

function and quadratic basis function. The variation 

of Von-Mises stress along Y=0 is computed and 

compared with Abaqus student software. The results 

are presented through Fig. 7a for LBF and in Fig.7b 

for QBF for 126.25Mpa traction along y axis. The 

deformed and undeformed shape is also presented in 

Fig.8a for LBF and in Fig.8b for QBF. The 

undeformed geometry is represented by circle and 

deformed geometry through FEM is represented by 

diamond whereas, the deformed geometry using the 

presented formulation is represented through triangle. 

The load steps are same as obtained through Abaqus 

student version software. And the first yielding 

behavior is observed at 70 MPa. 

 

Fig: 6. Discretization, Boundary Conditions and 

Loading Along Y Axis 
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Fig: 7a. Comparison of Von Mises Stress Using 

STF with LBF at 126.25Mpa Traction Along Y 

Direction 

 

 
 

Fig: 7b. Comparison of Von Mises Stress Using 

STF with QBF at 126.25Mpa Traction Along Y 

Direction 

 

 
 

Fig: 8a. Comparison of Deformed Meshless Model 

Using STF with LBF at 137.5MPa Traction Along 

Y Direction 

 

 

Fig: 8b. Comparison of Deformed Meshless Model 

STF with QBF at 137.5MPa Traction Along Y 

Direction 

 

 
 

Fig: 9a. Spreading of Plastic Strain Using STF- 

with LBF at 154.375 MPa Traction Along Y 

Direction 

 

 
 

The effective plastic strain spread zone as 

obtained from above formulation using spline test 

function with LBF and QBF are represented in Fig. 

9a and Fig. 9b respectively for 154.375 MPa. The 

variation of along Y=0 using spline test function is 

presented in Fig.10a for LBF and Fig.10b for QBF 

respectively corresponding to 6
th

 load step which is 

137.5 MPa. Here it is quite lucid from Fig.7a and 

Fig.7b for Von Mises stress along Y=0 and from 

Fig.8a and Fig.8b that for deformed and undeformed 

shape, the results obtained from above formulation 

are in close agreement with the result obtained from 

FEM based Abaqus student version. The results in 

Fig.10a and Fig.10b represents along Y=0 and a 

slight deviation is observed near the hole with LBF. 

The deviation is reduced to a much greater extent  
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using QBF. The computed results can be still 

improved by using suitable sub-domain and support 

domain sizes. 

 

Fig 9b: Spreading of Plastic Strain Using STF 

with QBF at 154.375MPa Traction Along Y 

Direction 

 

 
 

Fig: 10a. Comparison of σ_YY Using STF with 

LBF at 137.5MPa Traction Along Y Direction 

 

 
 

Fig: 10b. Comparison of σ_YY Using STF with 

QBF at 137.5MPa Traction Along Y Direction 

 

 

6.0 Conclusion 
 

 In this paper a true meshless approach is 

implemented for rigid plastic analysis of metal parts 

for plane stress and plane strain cases. In the present 

work, the governing equation are obtained for 

different set of sprinkled nodes over the problem 

domain and the integral equation are obtained 

through weak form of rigid plastic behavior over a 

local sub-domain. The meshless solution functions 

for different set of sprinkled nodes are obtained 

through moving least square technique. The essential 

boundary conditions are enforced through Penalty 

approach whereas no special attention is required to 

cater natural boundary conditions as they are 

automatically handled in the formulation. The 

constitutive relation implemented above incorporates 

only small deformation. The material constitutive 

relations are based upon rate independent flow theory 

with Von-Mises yielding condition. The nonlinear 

governing equations are solved using incremental 

iterative approach with modified Newton Rapsons 

technique because generating new stiffness matrix in 

each iteration is a costly affair. The numerical 

example case studies show that the above presented 

formulation is accurate and robust for modeling rigid 

plastic behavior of metal parts if suitable support and 

sub-domain sizes are chosen. It is further expected 

that MLPG method will soon replace FEM or BEM 

due to its high speed to convergence, good accuracy, 

and robustness 
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