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ABSTRACT 
 

Elastic deformation of metal parts has been a matter of great concern for investigation of researchers in 

academia and research institutions all over the world. Literature reveals that earlier researchers have applied 

efforts for evaluating Gaussian and spline test functions only for predicting elastic deformations. However few 

research efforts have been reported in literature for predicting elastic deformation through modified meshless 

method using exponential test functions. This paper presents an investigation for evaluating distinct test 

function for predicting elastic deformations of metal parts using modified meshless method. In present work, a 

modified meshless method has been implemented with three distinct test functions namely Gaussian, 

Exponential and Spline both with linear and quadratic basis function. Results of investigation reveal that 

Gaussian test function provides accurate results followed by exponential and spline functions. Effect of 

choosing different geometrical parameters affecting the solution for prediction of elastic deformation in case of 

exponential test function has also been presented here. Moreover, the present investigation for evaluating 

distinct test functions for predicting elastic deformations of metal parts using modified meshless method helps to 

observe that computational results with higher order basis functions are almost ten times better when compared 

with lower order basis functions. 

 

Keywords: Modified Meshless Method; Meshless Local Petrov Galerkin (MLPG) Method; Moving Least Square 

(MLS) Method; Test Function; Elastic Deformation. 

 

1.0 Introduction 

 

Elastic deformation of metal parts has been 

important activity in the area of solid mechanics. 

Numerous techniques were used to find elastic 

deformation of metal parts which has been a matter of 

great concern for investigators all over the world. For 

last few decades many researchers have been reported 

to work on meshless methods for alleviating the 

major drawbacks of Finite Element Methods (FEM) 

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. The 

research scholars working on Meshless methods 

criticize the FEM for the grid requirement for 

integration and domain representation. The pioneers 

working in meshless field adopted some fine features 

of FEM and they generated the system equations of 

the physical phenomena over the nodes without any 

grids formation. The first meshless technique named 

as Smooth Particle Hydrodynamics (SPH) method 

[11] was reported in literature in the year 1977 for 

solving fluid flow problems. However, this method 

could not be much admired by other researchers. The 

leap and bound progress in the area of meshless 

methods took place after the Diffuse Element Method 

(DEM) [12] in the year 1992. Afterwards within a 

short span of time, more number of meshless methods 

were reported in literature namely Element Free 

Galerkin (EFG) Method in 1994 [13], Boundary 

Node Method (BNM) [14], Reproducing Kernel 

Particle Method (RKPM) [15], hp-Meshless Cloud 

Method [16], Finite Pont Method (FPM) [17], 

Meshless Local Petrov Galerkin (MLPG) Method 

[18], Finite Spheres Method [19], Local Boundary 

Integral Equation (LBIE) Method [20], Point 

Interpolation Method (PIM) [21], Gradient 

Smoothing Method [22], Finite Mass Method [23], 

Radial Point Interpolation Based Finite Difference 

Method [24]. Local Maximum-Entropy (LME) [25],  
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Local Kriging (lokriging) Method [26], Generalized 

Meshfree Approximation (GMF) [27], Discrete Least 

Square Meshless Method (DLSM) [28], Radial Basis 

Integral Equation Method [29]. Truly Meshless Point 

Weighted Least Squares (PWLS) Method [30], 

Repeated Replacement Method (RRM) [31], variation 

of Local Point Interpolation Method (vLPIM) [1], 

Random Differential Quadrature (RDQ) Method [1]. 

Literature reveals that earlier researchers have applied 

efforts for evaluating Gaussian, and spline test 

functions only for predicting elastic deformations of 

metal parts.  

 In the present study, very few research 

efforts have been reported in literature for predicting 

elastic deformation of metal parts through modified 

meshless method using exponential test functions 

both with linear and quadratic basis function. This 

paper presents an investigation for evaluating distinct 

test function for predicting elastic deformations of 

metal parts using modified meshless method. In the 

present study, a modified meshless method has been 

implemented with three distinct test functions, 

namely Gaussian, Exponential and Spline functions 

both with linear and quadratic basis function. 

Most of the above listed meshless methods 

need grids formation either for interpolation or for 

integration reasons. These Meshless methods are not 

truly meshless. However, there are some other 

meshless methods which neither require any grid 

formation for integration nor for interpolation 

reasons. Such methods are popularly known as truly 

meshless methods. In the year 2005, Atluri and 

Shengping [32] stated that MLPG method is a 

concept and some other meshless methods can be 

devised from this method by suitable choice of test 

and trial functions. The present work emphasizes on 

the performance analysis of exponential test function 

for solving elastostatic problems though a truly 

meshless approach. This truly meshless approach 

utilizes the Moving Least Square Approximation 

Scheme (MLSAS) for approximating field variables 

and the same is presented as under. 

 

2.0 Moving Least Square Approximation Scheme 

 

The MLSAS approach consider 1-D problem 

domain where Schematic representation of Error ei 

for a field node ‘ i ’, support domain of a node ‘x’, 

domain of definition of point ‘y’, weight function for 

1-D case of MLSAS in meshless method is presented 

in Fig. 1. Where Ω s
x 

represents sub-domain of node 

x. To compute the distribution of u inside sub-domain 

Ω
x
s containg randomly located nodes xi , i = 1,2,3,…n 

, the MLS approximant of field variable represented 

as u
h
(x) is presented by Salkauskas and Lancaster 

[33] as 

 
Where P

T
x) = [Plx),p2x),p3x),… pmx) is a set 

of basis functions of order m according to Pascal’s 

[5] for completeness of the basis function. And ax) is 

vector of unknown coefficients. The vector ax) can 

be computed through two approaches according to 

Breitkopf et al [34] [35]. The minimization of 

weighted discrete L2 norm is applied to determine 

vector  using Eq. (2) in matrix form 

 
Where [P] is polynomial basis function vector, 

[W] is weight function matrix and the functional J x 

represents weighted square error. Now differentiating 

Eq. (2) with respect to unknown coefficient vector 

a(x) and equating it to zero, the least square error will 

be then minimized. 

 
The stationarity of J x functional in Eqs. (2) 

with respect to  will give the following set of 

linear equations between unknown coefficient vector 

 and actual field variable uˆ . 

 
Now solving for unknown coefficient vector 

 from Eq. (4) and on substituting it in Eq. (1), 

will give Eq. (5). The similar function is also used in 

FEM. 
 

Figure 1- Schematic representation of Error efor a 

field node „i‟, support domain of a node „x‟, 

domain of definition of point „y‟, weight function 

for 1-D case of MLSAS in meshless method. 
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And  is named as shape function, 

Where  corresponds to sample point of node i within 

the domain. The shape function is non-zero for a 

point within the support domain of node i this is 

known as compact support which is indispensible to 

preserve the local characteristic of the MLSAS. In the 

year 1998, Atluri [18] pointed out that the basis 

function’s order and the weight function’s type have 

strong effect on the smoothness of the shape function 

. The partial derivatives of such shape 

functions  as required for computation of 

strain were given by Belytschko [13]. 

In MLSAS, the linear and quadratic basis 

functions are implemented along with three weight 

functions popularly known as Spline weight function, 

Gaussian and Exponential weight function. Whereas 

Eq. (7) expresses spline weight function as 

 
is the absolute distance between field node x i 

and the point x . ri is support domain radius for node 

i. It is 

 
Where c i is a scaling parameter which controls 

the shape of the weight function and its effect on 

weight function was suggested by Thomas-Peter Fries 

[38]. 

It was also mentioned by Atluri [39] that the c i 

value could be chosen arbitrary and the results are not 

a 

 
Where γ is the smoothening parameter and its 

value can vary between 10-
3
 and 10

3
. In year 2012 

Abdollahifar [41] took the value of γ = 6 to make the 

weight function bell shaped. The variation in test 

function with sub-domain radius r v/s γ scaling 

parameter for test function is presented through Fig. 

2. 

 
worthwhile to mention here that the weight 

functions are defined only in support domain. The 

usefulness of said weight function was explained by 

Qing Xia Wang at el [36] and Jianfeng Ma [37]. The 

Gaussian weight function is presented through Eq. (8) 

 

 
strong function of this c i value. However, Liu 

[5] and Liu Kaiyuan [40] also explained on how to 

chose the value of ci . In current implementation, the 

value of exponent k is taken as 1. And the 

exponential weight function is expressed by Eq. (9) 

as under The value of smoothening parameter γ in the 

current implementation has been varied from 1 to 20 

to examine the behavior of the exponential weight 

function. Now the formulation of elastic analysis of 

metal parts using modified meshless method is given 

as. 

 

Fig: 2. Variation in Test Function with sub-

domain radius r v/s γ scaling parameter for 

exponential test function 
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3.0 Formulation of Elastic Analysis Using 

Meshless Approach 

 

 

 

Where  
p
 is the quadrature domain of p

th
 

node. The quadrature domain could be any shape as 

specified by Cheng [44]. Moreover Eq. (11), vi
p
 

represent test function for p
th

 node. But Chyou‐Chi 

Chien [45] stated that to make the formulation 

simpler, the test function should satisfy some of the 

properties like compactness, continuity and 

smoothness. 

The local weak form as in Eq. (11) can be 

given for p
th 

node located within region Ω and on Γ 

boundaries i.e. 

 
On substituting Eq. (12) in Eq. (11) and 

applying divergence theorem, the following Eq. (13) 

is now obtained. 

 
The Eq. (13) is valid for p

th
 node, where region 

is subjected to body force and a portion of boundary 

Γ is subjected to traction, and displacement boundary 

conditions are enforced. 

Figure 3:- Schematic representation of global 

boundaries  local boundaries 

 , global domain 

 & local sub-domains  support domains , 

boundary conditions  ,domain of influence 

of a node “ i”, domain of definition of a point “ f ”; , 

nodal discretization for 2-D case in truly meshless 

method 

 

 
 

The Eq. (13) can be deduced to Eq. (14) which 

is valid for all q
th

 nodes whose local boundaries do 

not interact with boundary Γ. And hence, the integral 

in Eq. (14) is being carried out over internal 

quadrature and integral over quadrature boundary Γq
q
 

i vanishes. Because vi
q
 test function is selected such 

that its value is zero at the boundary. 

 
In this formulation, the local weak forms given 

by Eq. (13) and (14) are applicable for continuous 

local domain of p
th

 or q
th

 nodes. The continuum 

problem domain is now discretized into N finite 

nodes. The system equations contribution for all the 

N field nodes is being expressed by Eq. (15) in matrix 

form as under 

 
The solution of these 2N equations now 

provides nodal displacements for N field nodes along 

X and  directions and can further be post 

processed to compute stresses and strains. In the 

above Eq.’s, the essential boundary conditions are 

enforced using direct interpolation method. For p
th
 

field node, the essential boundary conditions are 

prescribed as ui
p
 = u i

p
 on Γ q

p
u boundary segment of 

Γ. The essential boundary conditions for p
th

 node can 

be applied through Eq. (15) just by replacing (2p - 
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1)
th

 and (2p)
th 

rows of K 2N×2N and F 2N×1matrix by 
N

i 

=
N

1 ϕ i
p
 and u i

p 
respectively as suggested by 

Abdollahifar et al [41]. Where NN is number of 

nodes that lies within domain of influence of p
th

 node. 

 

4.0 Validation of the Meshless formulation: 

Results and Discussion 

 

Three case studies, namely first through an 

infinite plate with a central circular hole, second 

through thick cylinder subjected to internal pressure 

and third through an thin plate under normal loading 

are presented here for validating the said 2D 

Meshless formulation. These case studies are 

discussed as under. 

 

4.1. Case study of an infinite plate with a central 

circular hole 

An infinite plate with central circular hole 

subjected to unidirectional normal loading is 

considered for verifying the above presented 

meshless formulation treating plane stress case. A 

steel plate with central circular hole bearing the 

young’s modulus of elasticity E = 210.8GPa, 

and Poisson’s ratio ν = 0.3, is subjected to normal 

traction along  direction of 1MPa. Due to symmetry 

in plate geometry, the loading and boundary 

conditions, the quarter segment of the plate is only 

considered for analysis as shown in Fig. 4. In the year 

1987 Timoshenko [46] reported that when finite plate 

with circle hole having 
r
r
w

h > 5, then the solution is 

very close to that of an infinite plate with hole. Where 

rw, the radial width of the plate is taken as 5m; rh is 

the radius of circular hole which is 1m and length of 

quarter plate is 10m. 

A comparison of L2 error norm of normal 

stress σ xx for different values of scaling parameter in 

exponential test functions both with linear and 

quadratic basis functions are shown in Fig. 4a & Fig 

4b respectively. The close form solution of said case 

as given by Timoshenko [46] has been considered 

here, for the verification of results. The σ xx stress 

distribution in the said plate loaded along  direction 

as obtained from the close form solution: 

 

Where P, represents the traction force along X 

direction. The physical quarter plate with hole in 

present case is discretized non-uniformly into 443 

nodes. The Gaussian test function replicated the stress 

field for σ xx very well. Whereas, the computed 

results deviate for the other test functions. But, the 

error in computation could be minimized to a large 

degree, if the higher order basis functions are used. 

 

Fig: 4. Quarter infinite rectangular plate with 

circular hole nodal discretization, loading and 

boundary conditions 

 

 
 

Fig: 4a. Comparison of  error norm of  

for different values of scaling parameter in 

exponential test functions with linear basis 

function 

 

 
 

Fig: 4b. Comparison of  Error Norm of  

for Different Values of Scaling Parameter in 

Exponential Test Functions with Quadratic Basis 

Function 
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Fig: 4c. Comparison of  Error Norm of  

for Three Different Test Functions with Linear 

Basis Function 

 

 
 

Fig: 4d. Comparison Of  Error Norm of 

 for Three Different Test Functions with 

Quadratic Basis Function 

 

 
 

However, in order to study the impact of 

scaling factor γ, in the exponential test function, the 

variation of Euclidian norm is presented for different 

values of γ as shown in Fig. 4a with linear basis 

function and in Fig. 4b with quadratic basis function. 

The magnitude of error can be minimized to a 

greater extent by suitably choosing the γ value in case 

of this current test function. It was also stated by 

Abdollahifar [41] that the suitable choice of this γ 

scaling parameter is more or less arbitrary. The 

scaling parameter γ as used in the exponential test 

function is tested for higher values. Bar charts are 

presented based on Euclidian norm for both the linear 

and quadratic basis function in Fig. 4c & Fig. 4d for 

all the three test functions. It is observed from these 

bar charts that the Euclidian norm is largest for Spline 

function, hence it gives worst results and the same 

was also observed by Ching [47] and Jianfeng [37] 

when the Gaussian and the spline functions are 

considered. 

 

Fig: 5. Discretized Geometry, Boundary 

Conditions and Loading of Cylinder 

 

 
 

4.2. Case study of the thick cylinder subjected to 

internal pressure 

The problem of the thick cylinder subjected to 

internal pressure is modeled as plane strain and is 

considered for validation. The steel cylinder with 

material properties as young’s modulus of elasticity 

E=210.8GPa, Poisson’s ratio υ = 0.3, is subjected to 

an internal pressure 20 MPa. The geometry of the 

cylinder is such that it has an inner radius (Ri) 5m and 

outer radius (R0) 10m, has the regular discretization 

with 861 field nodes. The discretization of the field 

nodes is such that 41 nodes are sprinkled along θ or 

circumference direction and 21 nodes along the radial 

direction. 

 

Fig: 5a. Comparison of  Error Norm of  

for Different Values of Scaling Parameter in 

Exponential Test Functions with Linear Basis 

Function 
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Fig: 5b. Comparison of  error norm of  

for different values of scaling parameter in 

exponential test functions with quadratic basis 

function 
 

 
 

Due to symmetries in the geometric and the 

loading conditions the upper right quadrant of 

cylinder is only considered in the current analysis. 

The discretized geometry, essential boundary 

conditions and the loading of the cylinder are as 

shown in Fig 5. The test function and the basis 

functions are same as in earlier problem. A 

comparison of L2 error norm of the circumferential 

stress or the hoop stress (ae) for the different values 

of the scaling parameter y in exponential test 

functions are presented in Fig. 5a & Fig. 5b for both 

linear and quadratic basis functions respectively. It 

can be construed from the bar charts shown in Fig. 5c 

& Fig. 5d that the results are in close agreement with 

FEM results for Gaussian and exponential test 

functions as they have least Euclidian error norm for 

both choices of the basis functions. And the spline 

function shows higher error norm for both choices of 

the basis functions. It could also be noticed from 

Figure 5a & Figure 5b, that the value of scaling 

parameter γ = 7 could be the optimal choice as it 

provides the best computational results for the current 

problem for both types of basis functions. 
 

Fig: 5c. Comparison of  error norm of  for 

three different test functions with linear basis 

function 
 

 

Fig: 5d. Comparison of  Error Norm of  

for Three Different Test Functions with Quadratic 

Basis Function 

 

 
 

4.3 Case study of the thin plate under normal 

loading 

 

Fig: 6. Discretized geometry, boundary conditions 

and loading of thin plate 

 

 
 

Fig: 6a. Comparison of  error norm of  

for different values of scaling parameter in 

exponential test functions with linear basis 

function 

 

 
 

Fig: 6b. Comparison of  error norm of  for 

different values of scaling parameter in 

exponential test functions with quadratic basis 

function 
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Fig: 6c. Comparison of  error norm of  for 

three different test functions with linear basis 

function 

 

 
 

Figure 6d - Comparison of  error norm of 

 for three different test functions with 

quadratic basis function 

 

 
 

To study the impact of scaling parameter γ for 

the exponential test function, the Euclidian error 

norm has been presented for the different values of γ 

as shown in Fig. 6a & Fig. 6b for both the linear and 

the quadratic basis functions. Gaussian test function 

simulated the stress field for σyy very close to 

analytical solution whereas for the other test 

functions a deviation was observed in the computed 

results. However, it could be seen from the bar charts 

as shown in Fig. 6c & Fig. 6d that the computational 

error can be reduced to a greater extent by 

implementing higher order basis functions. It can be 

observed form the Figs. 6c & 6d that the amount of 

error incurring in the computation can be lowered to a 

larger extent by suitable selection of scaling 

parameter γ in case of exponential test function. From 

Fig. 6d, it can be pointed out that for all cases 

presented above except for the thin plate with 

quadratic basis function the least Euclidian norm for 

exponential test function is not achieved within 

considered values of γ. However some other values 

can be tried so as to get closer results than spline test 

function. But owing to such a least error norm of 

order -6, it is quite unusual computationally to try for 

other γ values. 

 

5.0 Conclusion 

 

The current truly meshless approach is 

implemented for the three distinct test functions 

namely Gaussian, spline and exponential for solving 

elasticity problems. The above numerically solved 

cases illustrate that the nodal concentration, the order 

of basis function, the type of test function and the test 

function parameters all affect the numerical results. 

The appropriate choice of the test function parameters 

in Gaussian and exponential test function are 

observed significant and important in the present 

study.  

While in case of spline test function only the 

few parameters are chosen that made this function 

simpler to numerically implement and interpret. On 

the other hand, this feature of spline test function is at 

the cost of accuracy. The identical behavior of the 

spline test function is not only observed in the current 

implementation but also the same behavior was 

reported in the open literature that the Gaussian test 

function is better than the spline test functions and 

provides better results. It is not astonishing that the 

Gaussian test function provides the lowest Euclidian 

error norm and hence better accurate results, when 

compared against exponential and spline test 

functions.  

It is also worthwhile to mention here that in 

terms of accuracy, the Gaussian function provides 

accurate result while the exponential function yields 

better results for suitable choice of the parameters,  
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and spline test function contribute to inferior results 

out of these three considered test functions. 

The second prospective for comparing these 

test functions could be the choice of parameters to 

yield better accuracy in computation. It could be 

inferred from the above that the spline test function is 

affected by the least number of factors, whereas 

exponential test function needed a few more numbers 

of parameters in its characterization. While the 

Gaussian test function demands the largest number of 

variables in its characterization. It is very important 

to mention here that better results for Gaussian and 

exponential test functions are at the cost of suitably 

chosen parameters.  

 The parameter dependent response of the 

exponential test function could be seen very clearly 

from the above graphs of γ parameter for Exponential 

Test Function v/s Euclidian error norm for both types 

of basis function.  

 It is further suggested that there is no single 

value of scaling parameter that can provide best 

results. However, the γ parameter could be chosen 

from 7 to 15.  

 It will also be important here to state here 

that even today the choice of these test function 

parameters is arbitrary and experience based and still 

some modus operandi or procedure is required so that 

the optimum choice of these test function parameters 

can be made to make current approach more efficient. 

The investigated case studies and open 

literature reveals that as the order of basis function is 

increased then the computational error can be 

minimized sufficiently.  

The bar charts for linear and quadratic basis 

function illustrates that for all the three test functions, 

the accuracy of the results is almost ten times better 

when the quadratic basis function is used over the 

linear basis function.  

It can be hence inferred from the above, that 

the choice of order of basis function has a significant 

effect whereas the test function’s choice has 

relatively less influence on the accuracy of the 

solution. 

It could be established from the above 

implementation that the solution of elasticity problem 

through meshless approach has strong dependence on 

nodal density, order of basis function and test 

function type.  

The order of basis function strongly influences 

the results as compared to test function type which is 

a strong function of optimum geometric parameters. 
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