
International Journal of Advance Research and Innovation

Vol. 6(1), Jan-Mar 2018, pp. 5-8

Doi: 10.51976/ijari.611802

www.gla.ac.in/journals/ijari

© 2018 IJARI, GLA University
Article Info

Received: 25 Jan 2018 | Revised Submission: 20 Feb 2018 | Accepted: 28 Feb 2018 | Available Online: 15 Mar 2018

*Corresponding Author: Department of Computer Applications, Siddaganga Institute of Technology, Tumakurur,

Karnataka, India (E-mail: sitvijay@gmail.com)

**Department of Computer Applications, Siddaganga Institute of Technology, Tumakurur, Karnataka, India

In Container Integration Testing Frame Work

H. S. Vijaya Kumar* and Vikas S. M.**

ABSTRACT

In Container Integration testing framework is a combination of four open source technologies. Arquillian, Test

NG, JaCoCo, and Maven. The aim of this work is to deals with automating the code using JaCoCo. JaCoCo is

a Java framework calculates code coverage. It find’s the amount of code coverage in each lines of module that

has been executed or missed and finally it will be deploy to wild fly server in the user matrix project source

container.The main idea behind developing in this automation testing framework is able to test server side

components developed using Java. The tests will be such that they will run in the container/application server

(e.g. Wild Fly) where the server side component (e.g. test1) is deployed and because of that the tests will be able

to use all the real resources (e.g. EJB etc.) provided by the container instead of mocking them.[1] Web Service

Description Language (WSDL) specification, we first automatically generate necessary Java code to implement

a client. We then leverage automated unit test generation tools for Java to generate unit tests, and execute the

generated unit tests, which in turn invoke the service under test. The next important objective is to calculate

amount of code covered by the test cases.

Keywords: Integration Testing; Automation Testing; Java Framework; Unit Tests.

1.0 Introduction

In Container Integration testing framework is

an integrated system that sets the rules of automation

of a specific product which integrates several

components such as function libraries, test data

sources, object details and various reusable modules.

These components help building a suitable

automation framework which enable testing the

business process as per the requirements. In addition,

test automation is used to control the execution of

tests and the comparison of actual outcomes with

predicted outcomes[2].

Manual Testing is a type of Software Testing

where Testers manually execute test cases without

using any automation tools[3]. Automatic Testing

technique where the tester writes scripts by own and

uses suitable software to test the software. It is

basically an automation process of a manual process.

The procedure being utilized to execute

automation is known as a test computerization

system, a few structures have been actualized

throughout the years by business sellers and testing

association. Mechanization actualized when it has

been resolved that the manual testing is not meeting

desires, keep away from human mistakes and when it

is impractical to get more manual analyzers.

Arquillian is a testing framework for Java that

leverages JUnit and TestNG to execute test cases

against a Java container.

TestNG is a framework using which the test

cases are written and these test cases are run by the

Arquillian.

TestNG is designed to cover all categories of

tests: unit, functional, end-to-end, integration[6]

JaCoCoframework calculates code coverage. The

coverage report calculated by

JaCoCo not only gives ball park view of how

much has or has not been covered by the test cases

but also give a code level view, showing the covered

code in green color, partially covered code in yellow

color, and missed code in red color [7].

Maven is used to handle the dependencies

required for running Arquillian, TestNG and JaCoCo.

It has been used a tool to bind the rest of the

technologies to work together.

6 International Journal of Advance Research and Innovation, Volume 6, Issue 1, Jan-Mar 2018

2.0 Literature Survey

Existing system has Manual Testing that uses

unit Testing using mocks[4]. An object under test

may have dependencies on other objects. To isolate

the behavior of the object you want to test you

replace the other objects by mocks that simulate the

behavior of the real objects. This is useful if the real

objects are impractical to incorporate into the unit

test.

This unit test is not isolated, it always depends

on external resources like database. This unit test

can’t ensures the test condition is always the same,

the data in the database may vary in time It’s too

much work to test a simple method, cause developers

skipping the test.[5] Proposed System is In container

integration testingArquillian helps simplify

integration testing of application. It is designed by

keeping to eliminate the drawbacks of the present

system in order to provide the solution for the

existing problems. The main focus is on.Reducing

manual test work.

Finding code coverage using JaCoCoIn-

Container testing of JavaEEcomponents.In container

Integration testing is aimed at automating the server

side components and testing of all the java based

products along with generation of code coverage

report. Functional and non-functional web service

testing [10] is done with the help of WSDL parsing

and regression testing is performed by identifying the

changes made thereafter. Web service regression

testing needs can be categorized in three different

ways, namely, changes in WSDL, changes in code,

and selective re-testing of web serviceoperations.

Representational State Transfer (RESTful) Web

Services: The functionality for RESTful web services

is well suited for basic, ad hoc integration scenarios.

RESTful web services, often better integrated with

HTTP than SOAP based services are, do not require

XML messages or WSDL service API definitions. It

is noted that in all web service applications, the

designed testing automation framework does not

work efficiently as it requires human intervention and

test data dependency [11].

3.0 Methodology

3.1 Design description

This Automation testing framework is

developed using four open source technologies viz.

Arquillian, TestNG, JaCoCo, and Maven. Each of the

four technologies plays important roles in achieving

the overall objective.

TestNG is the test framework using which the

actual test cases are written. Arquillian helps in

running the test cases in the target container e.g.

WildFly, so that the tests can also use the same

resources as the real application is using e.g. EJB,

CDI, etc.

JaCoCo is used in getting the code coverage

report. The maven is the glue that binds all the

technologies together. Maven also works as

dependency management and build tool.

3.2 Structured design

This is an industry standard. The technique

starts by identifying inputs and desired outputs to

create a graphical representation. Structured design

has been adopted.

The test data is fed through the test cases

written in TestNG and each of the components has

well defined responsibilities.

Each of the components operate in cohesive

manner to accomplish the overall task i.e. to deploy

and run test cases in the container and get coverage

report at same time.

It shows executed methods and unexecuted

methods

Fig 1: Color Coding of JaCOCO Report

In Container Integration Testing Frame Work 7

Fig 2: Architecture of in Container Integration

Frame

4.0 Design and Implementation

4.1 Design of the system

In container integration testingArquillian helps

simplify integration testing of application. Unit tests

live in their own world e.g. when you have to test

your EJBs, you have to mock the EJB container and a

whole lot of other things.

With Arquillian you no longer have to do all

those mocking or any other plumbing job to run your

tests.

Arquillian run your tests inside the choice of

your container. It deploys your test code with your

application code so that the test code can leverage all

the services of the container and your application gets

to live in the real world of its container.

Include a diagram as follows and explain how

it has been modeled to accomplish the user

requirements. e.g. JaCoCo for code coverage,

Arquillian for deploying and running test in the

application server.build management maven has been

used to configure test and application classes that

need to be built, the container adapter (e.g. wildfly-

arquillian-container-remote) to use when Arquillian

will try to deploy the test code in an application

container (e.g. WildFly), and JaCoCo to

include/exclude application source files in the code

coverage report.

Fig 3: Adding Maven pom.xml Dependency

Fig 4: Data Flow Diagram

Fig 4 DFD tells above the action performed by

client Here, Fetching data from Data Base, and

[9]creating a JSON file. Abstract Data Factory, were

creating an Object for which is related to a method.

Writing a test case using of data factory object and

using values of data base to asserting. Test Case runs

in a server. Final Step is to Check JaCoCo.

JaCoCo uses byte code instrumentation to

modify the compiled classes in the archive (e.g.

test1.ear) By modifying the compiled classes JaCoCo

puts some markers at appropriate places in the byte

code and when a line of byte code is executed that

marker changes to indicate the same. This execution

data is kept in a special file called jacoco.exec. After

the execution of all the test cases, JaCoCo maps the

8 International Journal of Advance Research and Innovation, Volume 6, Issue 1, Jan-Mar 2018

execution data to the corresponding source files to

generate the coverage report.

5.0 Results

5.1 Running test cases with code and cover report

It going to be a slow process so we are going

to use it less often. This approach requires the

application server running with no deployment in it.

Arquillian will connect to the running application

sever deploy the whole application along with the test

classes and test cases will be run against the

application. Covered test methods are represented by

green color and uncovered by red color

Fig 5: JaCoCo Code Coverage Report

6.0 Conclusions

Aimed at automating server side testing of all

the java based products along with generation of code

coverage report. The technology industry is moving

towards automating everything it can. The major

chunk of that automation includes automating the

manual testing so that the products can be tested

thoroughly, comprehensively, and as fast as possible.

Server side testing can be automated. This will save

time of QA so that they can work hard to break the

system by doing some rigorous testing and hence

improving the quality of software. The coverage

report generated by JaCoCo the developer can easily

find the junk piece of code and remove it, keeping the

code base clean.

If some part of the application code is not

getting covered then one can write test cases to cover

that part of code making the additions of code more

safe and reliable.

References

[1] X Bai, W Dong, WT Tsai, Y Chen. WSDL-

based automatic test case generation for web

services testing. In Proc. IEEE International

Workshop on Service-Oriented System

Engineering, 2005, 215–220.

[2] http://www.guru99.com/manual-testing.html

[3] http://www.softwaretestingclass.com/what-

is-automation-testing/

[4] https://www.mkyong.com/unittest/unit-test-

what-is-mocking-and-why/

[5] Book: Arquillian Testing Guide by John D.

Ament

[6] TestNG official documentation:

http://testng.org/doc/documentation-

main.html

[7] Maven official documentation:

https://maven.apache.org/guides/

[8] http://www.jacoco.org/jacoco/trunk/coverage/

[9] https://www.tutorialspoint.com/json/

 json_objects.htm

[10] http://en.wikipedia.org/wiki/Web_service

[11] MI Ladan. Web Services Testing

Approaches: A Survey and a Classification,

2010, 70–79

