
International Journal of Advance Research and Innovation

Vol. 6(2), Apr-Jun 2018, pp. 31-34

Doi: 10.51976/ijari.621806

www.gla.ac.in/journals/ijari

© 2018 IJARI, GLA University
Article Info

Received: 25 Jan 2018 | Revised Submission: 20 Feb 2018 | Accepted: 28 Feb 2018 | Available Online: 15 Jun 2018

*Corresponding Author: Department of Electronics and Electrical Engineering, The North Cap University, Gurugram,

Haryana, India.

**Department of Electronics and Electrical Engineering, The North Cap University, Gurugram, Haryana, India.

***Department of Electronics and Electrical Engineering, The North Cap University, Gurugram, Haryana, India.

Implementation of Parity Checker Using CMOS Logic Techniques

Bhargava Yasasvi*, Charu Rana
**

 and Pankaj Rakheja***

ABSTRACT

The technology is growing rapidly where the sizes of the components are getting reduced as the size gets

decreased the, possibility of errors gets increased. These errors can’t be prevented as they are generated in the

running phase. To handle such problems, we need a circuit which will be monitoring continuously and

correcting the errors generated. This paper proposes different ways to implement a parity checker in the

previous self-checking register. When compared with previous techniques. The circuits are stimulated in spice

using 90nm CMOS technology.

Keywords: Parity-Checker; Transmission Gates; Pass Transistors; Self-Checker; Glitch Filter.

1.0 Introduction

Errors are generated in every circuit by which

the performance can get affected. These errors can be

soft errors or hard errors. Soft errors are caused due

to the interaction or colloidal of particle and a change

in state can be observed. Soft errors can be classified

into Intrinsic-Temperature, Noisy and Extrinsic

Errors-Cosmic rays, neutrons.

Considering these factors, the performance of

circuit gets reduced. Thus, to maximize the

performance, a self-checking register is used to

control the errors generated and to correct them.

Previously there were so many techniques to control

the errors, but some techniques are not so efficient as

the main circuit errors get solved but the redundant

circuit has some errors. So, to control them a

SETTOFF self-checking register was used for

radiation errors.

The self-checking register in the previous

techniques has parity checker, glitch filter followed

by td checker. In this paper discuss various ways to

implement the parity checker.

The parity checker is basically an XOR tree

which can be implemented by using CMOS, pass

transistor and transmission gates. The main purpose

of developing a new circuit is to increase the

performance in minimum time and to decrease the

area as much as possible.

This paper compares the difference between

different implementation techniques and shows that

the area over head and delay are reduced.

2.0 Previous Techniques

The previous technique implemented parity

checker in a conventional way of using CMOS in

which there are 8 MOSFETS used to design an XOR

gate and the output is passed to the input of the Glitch

filter which will reduce the glitches and further

connecting it with the TD checker which generate the

final output[1].

The disadvantage of such parity checker is the

usage of large area overheads which is a major

drawback of the circuit design. This will also increase

the power consumption.

2.1 Parity checker

Parity checker is the process that transmits the

data between nodes during communication. Original

bits are used to create an even and odd bit number.

These bits are transmitted through a link that can be

any medium.

Data is considered to be accurate when the

transmitted and received bits are equal. Parity checker

is implemented using the Xor tree.

32 International Journal of Advance Research and Innovation, Volume 6, Issue 2, Apr-Jun 2018

3.0 Implementation of Proposed Parity Checker

Using Different Techniques

The Self-checking circuit is comprised of 3

components parity checker, glitch filter and TD-

checker. In this paper, the parity checker is

implemented through different methods and compar-

ed the output and come to conclusion that

which method can be used. Parity checker is

implemented by the following ways: -

1 CMOS

2 Pass Transistors

3 Transmission gate

Fig 1: Self-Checker

3.1 CMOS

CMOS using both PMOS and NMOS to

implement a logic gate. One MOSFET works at one

time and gives us a strong ‘0’ and ‘1’. In this paper,

CMOS is implemented by using 8 MOSFETS and 4

MOSFETS.

3.2. Pass Transistors

Pass transistors are generally NMOS

MOSFETS. Transistors are used as switches to pass

logic levels between nodes of a circuit, instead of as

switches connected directly to supply voltages. This

reduces the number of active devices, but has the

disadvantage that the difference of the voltage

between high and low logic levels decreases at each

stage. Each transistor in series is less saturated at its

output than at its input.

3.3 Transmission gates

Transmission gate works similar as a relay

which can conduct in both the direction or control the

signal with voltage potential. It is a CMOS-based

switch, in which PMOS passes a strong 1 but poor 0,

and NMOS passes strong 0 but poor 1. Both PMOS

and NMOS work simultaneously. Self-checker is

implemented using CMOS inverters, Transmission

gate at 1v. The W/L ratio for PMOS will be

280nm/100nm and for NMOS is 480nm/100nm. The

parity checker when implemented by

3.3.1 CMOS- 8 MOSFETS

This is the conventional way in which 4 PMOS

and 4 NMOS are connected serially with each other

while the inputs are A, B, ABAR and BBAR. These

inputs are given to NMOS and PMOS such that we

get a XOR gate. Fig-2, the implementation using

MOSFETS.

Fig 2: CMOS-8 MOSFETS

Fig 3: CMOS- 4 MOSFETS

https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/CMOS

Implementation of Parity Checker Using CMOS Logic Techniques 33

Fig 4: XOR Output

Fig 5: Self-Checker Output

Fig 6: XOR with Transmsision Gate

Fig 7: XOR and Self-Checker Output

Another way of implementing self-checker is

is using 4 MOSFET, 2 pmos and 2 nmos

3.3.2 . Transmission gate

In this technique Xor gate is implemented by

using 2 transmission gates, with inputs A, B, ABAR

and BBAR

3.3.3 Pass transistors

 This is implemented by using 2 Pass

transistors in which the supply is given to the drain

and gate of the MOSFETS, with inputs A, B, ABAR

and BBAR.

Fig 8: XOR with Pass Transistors

34 International Journal of Advance Research and Innovation, Volume 6, Issue 2, Apr-Jun 2018

Fig 9: XOR and Self-Checker Output

4.0 Comparative Analysis

The area gets decreased in the all the 3

Techniques as compared to the conventional way.

The Technique A, B, C uses MOSFETS 4:4:2. The

power consumption also gets decreased in all the

methods as per the usage of the MOSFETS. The

delays and area of the different methods with respect

to conventional CMOS are in the table I.

Tool: - T-spice.

Aspect ratio: - 90nm.

Table I

Device

No. of

Transi

stors

Area

Reduc

ed

Delay

of

XOR

Delay of

Self-

 (%) Checker

CMOS-4 4 50
7.2364

e-
1.2377e-

MOSFET 010 009

Transmiss

ion
4 50

7.2364

e-
1.2377e-

Gate 010 009

Pass 2 75
1.0306

e-
4.5640e-

Transistor 009 010

5.0 Conclusions

In this paper, different techniques are used for

implementing the parity checker that compares the

following parameters that are no. of transistors,

reduction of an area and the delay produced by XOR

gate.

Techniques used in the comparison are

transmission gates, pass transistors and CMOS

mosfet. Comparing all these techniques one can

conclude that using pass transistors is efficient than

the other techniques as pass transistor reduces the

area by 75% and delay produced is minimum.

References

[1] Y Lin, M Zwolinski. A Cost-Efficient Self-

Checking Register Architecture for

Radiation Hardened Designs.

[2] MN Babu, PNVK. Hasini, N Pavithra. An

Efficient High-Speed 9-bit Parity Checker

using 4-2 Compressors (IJARECE), 4(5),

2015.

[3] S Roy, RH Vanlalchaka. Power efficient odd

parity & checker Circuits (ICETACS), 1st

International Conference 2013.

[4] DA Anderson, G Metze. Design of Totally

Self-Checking Check Circuits for m-Out-of-

n Codes, IEEE Transactions on Computers,

C-22(3), 1973.

[5] J Khakbaz, EJ McCluskey. Self-Testing

Embedded Parity Checkers, IEEE

Transactions on Computers, C-33(8,) 1984

[6] N Kanopoulos, JH Carabetta. Design and

implementation of a totally self-checking 16

× 16 bit array multiplier, 2, 2003.

