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ABSTRACT 

 

Electric Discharge Machining process is one of the earliest and most extensively used unconventional 

machining process. It is a non-contact machining process that uses a series of electric discharges to remove 

material from an electrically conductive workpieces. The EDM process parameter are pulse on time, duty 

factor, peak current, peak voltage, flushing pressure. This study is aimed to do a comprehensive study of the 

EDM, develop a model that can predict the machining characteristic and then optimize the output parameters. 

Artificial Neural Network processes the information by transferring the data between its basic building block 

i.e. Artificial Neuron. Genetic algorithm is a metaheuristic technique used to find the best fit and approximate 

solutions to optimization and search problems. In this project we proposed a GA-ANN hybrid model. Also 

comparison is studied the experimental values and ANN predicted values. GA-ANN model concludes that the 

error calculated in experimental values V/S ANN-GA predicted values is very less compared to experimental 

values V/S ANN predicted values 

 

Keywords: Electric Discharge Machine; Optimization; Artificial Neural Networks. 

 

1.0 Introduction 

 

Electrical Discharge Machining (EDM) is one 

of the earliest and most extensively used machining 

process. It is a thermal metal erosion process that uses 

series of electrical discharges to remove material 

from an electrically conductive workpiece. Unlike the 

traditional machining processes such as drilling, 

milling, turning etc. there is no contact between the 

workpiece and the tool in the EDM process, i.e. 

instead of using mechanical forces to fracture the 

material, a series of electrical pulses is used to erode 

it. The electrical discharges occurring due to the 

pulsating voltage applied across the electrodes results 

in melting of the workpiece which is then flushed by 

the surrounding dielectric. 

During the EDM process a gap of about 40 µm 

is maintained between the electrodes using a servo 

mechanism and a pulsating direct current supply is 

connected across them. As shown in Fig. 1 which 

describes the general schematic diagram of Electro 

Discharge Machining, the electrodes are immersed in 

a dielectric material such as hydrocarbon oil, 

deionized water, cutting oils etc. When a gap voltage 

(Vg ≈ 200V) is applied across the electrodes, due to  

the resulting high electric field between the 
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electrodes, breakdown of the in between dielectric 

material takes place and a plasma channel is 

developed after a certain delay time. Once the plasma 

channel is set up, discharge current starts flowing in 

the circuit, the voltage across the electrodes falls to a 

lower value (Vd ≈ 25V), during this pulse on time 

(ton), the temperature of the plasma reaches as high 

as 40,000K and a melt pool of the molten electrodes 

is produced [1]. Due to such a high temperature 

vaporization of the electrodes as well as the dielectric 

takes place, the gases formed confines the plasma 

channel in a bubble and the pressure within this gas 

bubble can be as high as 14 bars. This high pressure 

results in superheating of the molten metal. When the 

applied voltage turns off during the pulse off time 

(toff), the gas bubble implodes violently flushing the 

molten metal out of the melt pool, and a crater about 

100 µm wide is left out. The voltage and pulse 

waveforms measured at the gap in a typical EDM 

operation is shown in Fig. 2. This process is repeated 

many times throughout the whole workpiece surface 

during the machining process, to remove the desired 

amount of material from the workpiece. A more 

detailed description of the material erosion 

mechanism is given in section 2.1.2. 

 

2.0 Types of Edm Processes 

 

The most common types of EDM are:- 

1 Die Sinking EDM:- The die-sinker EDM uses a 

shaped tool electrode and workpiece which are 

immersed in a dielectric fluid, when the voltage 

is applied across the electrodes, erosion of 

 

Fig 1: Schematic Diagram of an EDM Machine [2] 

 

 
 

Fig 2: Voltage and Pulse Waveforms of an EDM 

Machine [3] workpiece takes place and the tool the 

tool shape is replicated on it. 

 

 
 

2 Wire EDM (WEDM):- The wire EDM uses a 

thin continuously travelling metallic wire usually 

made of copper, brass or tungsten and having a 

diameter of around 0.05-0.3mm. This wire is 

always kept in tension using a mechanical 

tensioning device and is fed through the 

workpiece which is submerged in a dielectric 

fluid. The metal ahead of the wire gets eroded, 

and the wire is controlled numerically to produce 

desired shapes and cavities without the 

requirement of pre-shaped electrodes. De-ionized 

water is mostly used as the dielectric fluid in case 

of WEDM, due to its low viscosity and fast 

cooling rate [4]. 

Using wire EDM hard conductive materials 

can be machined easily to produce complex and 

precision components. The WEDM can produce 

surface finish as fine as 0.04-0.25 µRa, and the 

residual stresses in the EDMed surface is very low. 

Typical cutting rates of WEDM are  300 mm
2
/min for 

a 50 mm thick D2 tool steel and 750 mm
2
/min for a 

150 mm thick aluminium plate.  Fig. 3 shows the 

schematic diagram of the wire EDM process. 

 

Fig  3: Schematic Diagram of Wire EDM [6] 
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Fig 4: Diagrammatic Representation of EDM 

Metal Erosion Mechanism 

 

 

 

Pandey and Jilani [10-12] presented a thermo-

mathematical model describing the EDM process. For 

a disc shaped heat source and a semi-infinite 

workpiece, the cylindrical heat conduction equation 

was solved numerically with appropriate initial and 

boundary conditions, taking into account the effect of 

plasma channel widening [11]. Consideration of the 

plasma channel expansion improves the consistency 

between the theoretically predicted values and the 

experimental outcomes. Thickness of the heat 

affected zones were also predicted with reasonable 

accuracy [10]. The effect of non-rectangular pulses 

on the material removal and the relative electrode 

wear was studied and the optimum current  pulse 

form in terms of the relative electrode wear was 

found out [12]. F S Van Dijck et al. [13] calculated 

the exact solution of a two dimensional transient heat 

conduction equation for a semi-infinite body 

subjected to a time dependent uniform heat flux. 

Plasma channel widening is taken into account to 

improve the accuracy of the model. Pandit and 

Rajurkar [14] developed a hybrid thermal model of 

transient temperature distribution in the EDM process 

using Data Dependent Systems (DDS) and the heat 

conduction equation. A complex and stochastic 

process such as EDM can be modeled using DDS 

directly from the experimental data, and any other 

knowledge about the system is not required in this 

approach. A first order DDS model of the machined 

surface generated after EDM process is combined 

with the heat conduction equation using some 

realistic assumptions. The model used a circular heat 

source and semi infinite workpiece assumption  and 

the results matched well with the experimental 

results. A. Erden et al. [15] examined 8 different 

Mathematical models of EDM process and compared 

their predictions with experimental outcomes. He 

concluded that the point heat source model used by 

Zingerman and Carslaw gave satisfactory result with 

low computation time but the predicted crater shape 

was in accurate while the model developed by Pandey 

and Jilani [10], gave the best results among 2D 

models in terms of crater volume and computing 

time.  

An extensive research on the EDM process 

was carried out at the Texas A&M University, and a 

series of three papers was released afterwards. The 

first paper by DiBitonto et al. [1] proposed a simple 

cathode erosion model of the EDM process. Several 

simplifying assumptions were used, that apply to a 

cathode erosion model with reasonable accuracy, 

such as a point heat source model; a constant fraction 

of the total power is lost to the cathode independent 

of current and pulse time; average thermo physical 

properties of the cathode material apply to the range 

of solid to liquid etc. The model predicted the pulse 

time with an average of 16% error for steel, when the 

model was tuned to a single experimental point of 

12.8A current. They also presented a dimensionless 

universal model of the EDM process, that included 

two dimensionless parameters g (optimum pulse time 

factor) and j (erodibility).  

At last the Compton's energy balance for gas 

discharges was modified for EDM process. In the 

second paper Mukund R. Patel et al. [16] proposed an 

anode erosion model, in which all the simplifying 

assumptions similar to the above paper were used. 

The plasma radius expansion at the Anode was also 

taken into consideration and a Gaussian heat flux 

distribution was used. The model is able to show the 

rapid melting of the anode material and its successive 

resolidification at longer pulse times and predict the 

erosion rate curves qualitatively correct. Also the 

plasma flushing efficiency predicted by this model is 

within experimental uncertainty compared to the 

experimental data of the AGIE EDM technologies. 

The third paper by Phillip T. Eubank et al. [17] 

presents a variable mass cylindrical plasma model for 

the sparks created in a liquid dielectric by the 

electrical discharge during EDM process. The 

theoretical model is formulated by solving three 

differential equations i.e. a fluid mechanics equation, 

an energy balance equation, and a radiation balance 

equation combined with a plasma equation of state. 
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Numerical solutions of these equations are developed 

yielding temperature, plasma radius, mass and 

pressure as a function of pulse times for fixed current, 

electrode gap and the power fraction remaining in the 

plasma. These three papers although based on 

comprehensive research used oversimplifying 

assumptions and are unable to give satisfactory 

results for small discharge energies. 

The material removal rate during an EDM 

process is affected by various process parameters, out 

of which the pulse waveform is among the most 

influential factor. A. Erden et al. [18] studied the 

effect of different energy pulse forms on the MRR 

and relative electrode wear. He concluded that the 

commonly used rectangular pulses are not the 

optimum pulse forms and more general pulse shapes 

offer better MRR and lower REW. Out of these 

pulses he advocated for trapezoidal, because they can 

be achieved cheaply and the trapezoidal pulses with 

negative slopes gives high MRR in comparison to the 

rectangular pulses although REW is also high while 

positive slopes give less MRR as well as less REW.  

Singh and Ghosh [8] proposed that the 

electrostatic forces acting on the metal surface are 

responsible for metal removal in case of short pulses 

(discharge duration < 5µs), while melting is the 

dominant factor for metal removal in case of long 

discharge durations (discharge duration > 100 µs). 

They estimated the electrostatic forces acting on the 

surface of the metal and the stress distribution within 

the metal due to the electrostatic forces. The model 

explains that crater depth is independent of the 

discharge duration (td), for small values of td and 

increases for medium discharge duration. 

 

3.0 Numerical/Computational Models 

 

Equations governing the EDM process are 

hard to model and solve using analytical techniques, 

hence a large number of researchers have heeled 

toward the use of numerical methods. Numerous 

papers are present devoted to the numerical modeling 

of the EDM process [3,19-25]. All the different 

factors that influence the EDM performance are tried 

to be incorporated in these computational models, to 

improve the model accuracy. 

P. Shankar et al. [25] used finite element 

method to solve equations governing the temperature 

and current simultaneously. In the model discharge 

process and heat transfer within the electrodes and 

dielectric were accounted. The variations in the 

material properties with change in temperature was 

used in the model. The electrode region was divided 

into a 2D mesh using an automatic mesh generation 

program and the Glaerkin's method was used to solve 

the partial differential equations. The spark profile, 

energy distribution between the electrodes, MRR and 

REW was calculated and compared with the 

experimental results.  Discrepancies were found 

between the experimental and theoretically predicted 

MRR and REW values, because of the assumption 

made while formulating the model.  

Marafona and Chousal [24] proposed a Joule 

heating based model, in which heat dissipated by the 

cylindrical heat source is governed by Joule heating 

effect. ABAQUS software was used to develop a 

FEM model, and the results were compared with Ref. 

[1]. The two results followed the same pattern but 

appreciable discrepancy was present between the two 

models. A user subroutine was used by Y.B. Guo et 

al. [22] to develop Gaussian heat flux distribution in a 

multiscale diesinker EDM model of ASP2023 tool 

steel.  

The finite element computational packages 

(such as ANSYS, ABAQUS, HYPERMESH etc.) 

provide an interactive tool to researchers using which 

they can model complex processes, which will 

otherwise be very hard or even impossible to model 

using analytical methods. H. K. Kansal et al. [26] 

used the finite element method to develop a model of 

the powder mixed EDM (PWEDM) process. Critical 

features such as change in material properties with 

temperature, heat distribution between the electrodes, 

size and shape of heat source, pulse on/off time, 

phase change of material, material ejection efficiency 

were considered in the model, and the effect of 

different process parameters on the temperature 

distribution was analyzed. Their model predicted 

MRR values with good accuracy, compared to the 

experimental results. They also concluded that the 

PMEDM model produced craters which are smaller 

and shallow craters. Borja Izquierdo et al. [27] 

developed a finite element model addressing the 

successive discharges that takes place in a real EDM 

process in spite of the single discharge model used by 

most of the researchers.   

 

4.0 ANN Models 

 

Artificial neural networks are intelligent tools 

which can be used to model complex nonlinear 

relationships between variables by mimicking the 
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working process a nervous system [31]. An artificial 

neural network consists of a network of artificial 

neurons that can learn the complicated relationship 

between the input variable such as various process 

parameters like discharge voltage, current, machining 

time, pulse on time etc.  and the corresponding output 

variable i.e. surface roughness, MRR etc. A set of 

experiments is designed and fed to appropriate ANN 

model, which models the interrelation between the 

input and output variables and then can be used to 

predict the outcome of an out of set machining 

parameter set The data set provided to the ANN 

model is divided into two sets, namely, training and 

testing data sets. The training data set is used to train 

the neural network while testing data set is used to 

check the accuracy of the model's prediction. A 

number of researchers [32-41] used ANN to create a 

model of the EDM process, to predict the effect of 

various process parameters [34,37,39] and for the 

process optimization [32,35,38,41]. 

Assarzadeh and Ghoreishi [35] used a 3-6-4-2 

neural network trained to model the EDM process of 

BD3 steel material machined using copper electrode. 

Here 3-6-4-2 denotes that the neural network had 4 

layers, one input layer with 3 neurons, two hidden 

layers with 6 and 4 neurons respectively and one 

output layer with 2 neurons. The machining was 

carried out 96 times using different input parameters 

out of which 82 sets were used for training and the 

rest for testing. The trained network predicted the 

MRR and Ra values for the testing data set with 

5.31% and 4.89% mean error.  

The selection of optimum network topology is 

a rigorous process and there is no general method 

available for its prediction, hence usually the trial and 

error approach is used for its selection. Panda and 

Bhoi [38] provided a detailed comparison of the 

performance of ANN models having different number 

of hidden layers and the number of neurons in each 

layer, that was  used for the prediction of metal 

removal rate corresponding to input parameters. The 

network was trained using Levenberg Marquardt 

Backpropagation algorithm. The 3-7-1 network was 

found to give the most accurate results. Tsai and 

Wang [33] compared six different neural networks 

and a neuro-fuzzy network in terms of the error in 

their predicted outputs. The neuro-fuzzy system was 

found optimal for the given experimental data set. 

A genetic algorithm is a robust heuristic global 

optimization tool that can be used to calculate global 

maxima in a multimodal search space. GA's are 

coupled with neural networks in two different ways. 

Genetic Algorithms are used to optimize the 

EDM process by selecting the machining input 

parameters corresponding to the optimum output 

characteristic, such as high MRR, or low Ra etc. 

using a trained neural network[33,38,43,44]. 

A hybrid approach has been adapted by some 

researchers in which GA is used to optimize the 

network weights in order to improve the network 

predictions [33,37]. 

 

4.1 Experimental data 

The experimental data presented in table 1 has 

been used to develop a Hybrid GA-ANN based model 

that can predict the machining characteristic using the 

set of machining inputs and its output. The 

experiments were performed on ELECTRONICA-

ELECTRAPLUS PS 50ZNC (die sinking type) EDM 

machine in the LML company in Kanpur (U.P). This 

data has been used with due permission from the 

original experimenter.  

Set of experiment were designed using a L27 

orthogonal array with 5 input parameters and one 

output parameter. The selected input parameters are 

Gap Voltage, Pulse Current, Pulse On Time, Pulse 

Off time, and Flushing pressure, and the 

corresponding measure output is the Material 

Removal Rate (MRR). This set of experiments is 

used to develop a neural network model which can 

accurately predict interpolate machining output for 

off sample data points, i.e. set of machining inputs 

which area are not present in the experimental set.  

 

Table 1: Experimental Set of Data 

 

Exp.

No 

Gap 

volta

ge 

(V) 

Puls

e 

curr

ent 

(A) 

Puls

e off 

time 

(µs) 

Pul

se 

on 

tim

e 

(µs) 

Flus

hing 

pres

sure 

(kg/

cm2

) 

MRR 

(gm/min

) 

1 50 9 15 90 0.25 0.092805 

2 50 9 15 90 0.50 0.095663 

3 50 9 15 90 0.75 0.099430 

4 50 12 45 120 0.25 0.138074 

5 50 12 45 120 0.50 0.141079 

6 50 12 45 120 0.75 0.137190 

7 50 15 90 150 0.25 0.158560 

8 50 15 90 150 0.50 0.145560 
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9 50 15 90 150 0.75 0.160241 

10 60 9 45 150 0.25 0.065670 

11 60 9 45 150 0.50 0.065600 

12 60 9 45 150 0.75 0.065480 

13 60 12 90 90 0.25 0.065408 

14 60 12 90 90 0.50 0.144221 

15 60 12 90 90 0.75 0.150787 

16 60 15 15 120 0.25 0.154021 

17 60 15 15 120 0.50 0.175421 

18 60 15 15 120 0.75 0.176577 

19 70 9 90 120 0.25 0.074460 

20 70 9 90 120 0.50 0.069428 

21 70 9 90 120 0.75 0.071915 

22 70 12 15 150 0.25 0.094715 

23 70 12 15 150 0.50 0.096211 

24 70 12 15 150 0.75 0.098076 

25 70 15 45 90 0.25 0.180139 

26 70 15 45 90 0.50 0.171739 

27 70 15 45 90 0.50 0.180506 

 

ensured then using the validation points, and 

then the model is used to predict the outcome at the 

set of input parameters corresponding to the testing 

data points, which were not fed to the neural network 

during the training process.  

The corresponding regression plot is shown in 

figure 5. The comparison between the experimental 

outcomes and the network predicted values is shown 

in figure 6.  

The total correlation coefficient is found to be 

equal to 0.9987 for the ANN model. 

 

Table-2: Parameter Values of Feed-Forward 

Backpropagation Neural Network 

 

Topology of the Neural 

Network 
Feed-forward 

Learning Algorithm 
Scaled Conjugate 

Gradient 

Number of hidden layers 1 

Number of neurons in 

hidden layer 
10 

Iterations 2000 

Max-validation checks 20 

Performance function Mean Square Error 

Number of weight elements 71 

Training Divide Function Random 

Training ratio 0.7 

Validation ratio 0.15 

Testing ratio 0.15 

 

Fig 5: Regression curve of ANN model 

 

 
 

4.2 GA-ANN model 

A hybrid GA-ANN model was then developed 

afterwards using the same parameter settings selected 

for the ANN model as shown in Table 2. Table 3 

shows the various parameters selected for the Genetic 

algorithm program that is used as a training algorithm 

in this model. The corresponding regression curve is 

shown in Fig. 16, and the Fig. 17 shows the 

comparison between the GA-ANN model predicted 

values and the experimental values.  

Total Correlation coefficient of 1 is obtained 

using the hybrid model. As it can be seen from the 

figures 7 and 8, significant improvement in the 

network predictions are obtained on using the hybrid 

training algorithm. Figure 8 compares the errors 

between the predicted and the actual values for the 

two models.  

From the figure 9, the maximum error in case 

of the ANN model that was around 17.52% reduces 

to 7.5% in case of the GA-ANN model which means 

is 43% decrease in the maximum error. It shows that 

the developed GA-ANN model is better than the 

simple ANN model. Optimum Machining output 

Prediction :- The developed hybrid GA-ANN model 

is then used to calculate the optimum machining 

characteristics and the corresponding set of input 

parameters. The control of the developed model was 

passed to a genetic algorithm which generates a 

population of set of input parameters in the form of  

chromosomes. The fitness function was selected as 

the MRR. These chromosomes are then evolved to 

the optimum MRR value by using the genetic 

operators.  
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The result of which is shown in Table 4. The 

maximum MRR value obtained in the experimental 

data set is 0.180506 gm/cc, while the optimum value 

of MRR obtained is 0.2184 gm/cc which is a 21% 

increase in the material removal rate. 

 

Fig 6: Comparison Between the Ann Predicted 

and Experimental Outcomes for The Ann Model 

 

 
 

Table-3: Parameter values of the Genetic 

Algorithm 

 

Population Size 200 

Population Type Double Vector 

Selection Function Stochastic Uniform 

Crossover Method Scattered Crossover 

Mutation Method Gaussian 

Mutation Probability 0.01 

Stopping Criterion Tolerance Value 

Tolerance Value 10
-15

 

 

 

Fig 7: Regression curve of ANN model 

 

 
 

Fig.8: Comparison Between the Ann Predicted 

and Experimental Outcomes for the Ga-Ann 

Model 

 

 
 

Fig. 9: Error Histogram of the GA-ANN & ANN 

model 

 

 
 

Table-4: Optimum Machining Characteristics. 
 

Machining parameters for achieving Maximum 

MRR 

Gap Voltage 56.907 

Pulse Current 15.00 

Pulse off time 44.99 

Pulse on time 123.67 

Flushing Pressure 0.5069 

MRR 0.2184 

 

Conclusions 

 A large number of different techniques and 

methods are used for EDM process modeling, 

e.g. mathematical models, analytical models, 

numerical/computational models and AI based 

models. 
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 None of these models are perfect and certain 

disadvantages are present with all these models. 

 The mathematical models are found to give 

satisfactory results only, due to complexity of the 

process and the large assumptions made to 

simplify the model. 

 Numerical models are very accurate in their 

predictions and can incorporate most of the 

factors in the model. 

 Analytical models require expensive 

experimentation, valid in the experimental range 

and have limited accuracy. 

 The AI models are widely by researchers 

recently and have good generalization capability 

and quite accurate in their predictions. 

 The Hybrid GA-ANN model gave better results 

in comparison to the simple ANN model, and 

using it a 47% decrease in the maximum 

prediction error is noticed. 

 A 21% increase in the MRR is got when this 

model is used to predict the optimum machining 

characteristic. 
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