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ABSTRACT 

 

Lead-freeBaTiO3-basedmaterials is the replacement of lead-based materials for various dielectric applications. 

These materials having excellent piezoelectric, pyroelectric and ferroelectric properties in comparison of lead-

based counterparts. In this article, the role of Cerium dopant on microstructural and dielectric performance of 

BaCexTi1-xO3 (BCT) ceramics with compositions x=0, 0.1, 0.12 and 0.15 is investigated in detail. A diffuse phase 

transition is typical for all the Ce doped compositions, with a substantial reduction of the Curie temperature 

towards room temperature. The performance of  BaCe0.15Ti0.85O3 was good with respect to other samples. 
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1.0 Introduction 

 

Ferroelectric oxide ceramics are used in a 

very broad range of functional ceramics and form 

the materials base for the majority of electronic 

applications like various types of sensors, actuators, 

buzzers, medical ultrasonic transducers and other 

electronic devices. [1-3]. Interest in lead-free 

ferroelectric ceramics has sparkled over the period 

of time owing to the need to find a suitable 

replacement of its lead based counterparts namely 

lead zirconate titanate (Pb(Zr,Ti)O3, PZT) which 

contains ∼60 wt.% of toxic lead[4-6]. In this 

context, as their replacement, these three well 

known ferroelectrics based on BaTiO3, KNbO3, and 

Na1/2Bi1/2TiO3 in pure and modified forms have been 

explored with renewed interest in the last decade. A 

perusal of literature suggests that Zr [6-7], Sn[7,8] 

and Hf[7,9] substitutions in BaTiO3 proposes 

interesting opportunity to chemically tune the 

orthorhombic-tetragonal and rhombohedral-

orthorhombic phase transitions near to room 

temperature for enhanced piezoelectric properties. 

In another study by Yao et.al, a giant 

piezoelectric coefficient (d33) of 697 pC/N has been 

found in BaTiO3-11BaSnO3 which is highest 

reported value till date[10]. As part of the on-going 

research on lead-free ceramics, it is of prime motive 

to develop further the various types of cations whose 

substitution at the Ba and/or Ti sites could enhance 

the performance of base composition for many 

dielectric applications, similar to that of Zr, Hf, and 

Sn. All these findings incited worldwide exploration 

on BaTiO3-based materials for replacement of lead-

based materials for various dielectric applications. 

One of the captivating features of BaTiO3 ceramics 

is that by forming solid solutions with some of the 

rare earth ions like Ce[11] and Y[12], a relaxor 

behaviour with enhanced dielectric, piezoelectric 

and pyroelectric performance can be induced. 

Among the BaTiO3 based ferroelectrics, BaTiO3 

doped with Ce garnered researchers scrutiny both 

due to application and fundamental interests[13-15]. 

The dopant ion Ce can enter into BaTiO3lattice as 

Ce
3+ 

or Ce
4+

. The ionic radii of Ce
3+

 is in close 

proximity to that of Ba
2+

 ion which makes Ce
3+

 to 

occupy Ba site
12

. Ce
4+

 having an ionic radius in 

close proximity with that of Ti
4+

 will substitute Ti 

sites[14]. Further it is the fact that Ce
4+

 ion being 

more stable than Ce
3+

 ion will occupy Ti site. 

Therefore, it is of prime importance to study the site 

occupancy of Ce in BaTiO3 perovskite lattice. In this 

context, few studies reveal the substitution of Ce 

ions can take place at both sites (A and B) in the 

BaTiO3 perovskite unit cell when concentration of 

Ce<8% which can result in completely different 

characteristics[16]. Curecheriu et.al. studied the site 

occupancy for Ce>=0.1 and the peculiar features 

observed by him indicated the B site occupancy of 

Ce[17]. This system has not been investigated in 
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detail so far in literature. For instance, Anget.al. 

have reported the electric field induced strain 

behaviour for some cerium-doped BaTiO3 

compositions[16,18].  

Makovecet.al.[14] proposed a detailed phase 

diagram of CeO–BaO–TiO2, while more recently 

Brajeshet. al.[19] discussed about the relationship 

between the ferroelectric instability and large 

piezoelectric coefficient in Ce-BT ceramics with 

small cerium amount (y<0.12). Recently, the 

dielectric and ferroelectric P-E hysteresis 

characteristics were investigated by Curecheriu et.al. 

for BaCeyTi1-yO3 ceramics with y=0.1, 0.2 and 0.3 

and explored these materials for application as 

tunable capacitors [15].  

In view of this, we limited ourselves to 

examine the structural, dielectric and ferroelectric 

behaviors of few Ce doped BaTiO3 [BaCexTi1-xO3 

(x=0, 0.1, 0.12, 0.15)] in the present  

 

2.0 Experimental Methodology  

 

 Ceramics of composition BaCexTi1-xO3  

(x=0, 0.1, 0.12 and 0.15) were synthesised using solid 

state reaction route. High purity analytical reagent 

grade powders of barium carbonate [BaCO3,(99% 

pure)], Titanium dioxide [TiO2,(99% pure)] and rare 

earth oxide Ceric oxide [CeO2,(99.99% pure)] were 

used as the starting precursors.  

These starting materials were weighed 

according to their stoichiometric ratio and ball milled 

for 10 h in acetone as the wetting agent to have 

physical homogeneity.  

The mixture after drying was subjected to 

calcination at 1000
o
C for 4h. Following calcination, 

the resultant mixture was pressed to form a disc 

shaped pellets having a diameter of 12 mm and a 

thickness of 1 mm after mixing 2% by weight 

polyvinylalcohol (PVA) which acts as a binder 

lubricant.  

The green samples were sintered at 1500
o
C for 

9 hours. Afterwards, the density of the samples was 

measured employing Archimedes principle. 

The sintered ceramics were characterized by 

X-ray diffraction (XRD) (Rigaku Smart Lab, 

Japan).Scanning electron microscopy (SEM) (FEI 

SEM NOVA Nanosem 450, Hillsboro, OR) was used 

to study the samples surface morphology.  

For the electrical measurements, silver 

electrodes were used on the polished surface of the 

ceramic samples.  

The polarization-electric field (P-E) hysteresis 

loops were recorded at various temperatures using a 

modified Sawyer Tower circuit (Marine India). The 

dielectric constant and loss were determined using 

impedance analyzer (Agilent E4990A, Agilent 

Technologies Inc., Santa Clara, CA). 
 

3.0 Results and Discussion 

 

 Figure 1 shows the XRD patterns of the 

BaCexTi1-xO3ceramics for various Ce content (x=0, 

0.1, 0.12, 0.15) sintered at 1500
o
C/9 hrs. The lack of 

any secondary peaks indicates that the solid state 

reaction has occurred in the specified sintering 

conditions. The structural analysis evidences that the 

limit of solid solubility of Ce
4+ 

ions to Ti ions in 

BaTiO3 lattice is around x=0.3 as reported by 

Anget.al. [18]. The diffraction peaks of the undoped 

ceramic correspond well to T-symmetry (PDF#05-

0626) [21]. We observe that the peak intensity splits 

into two {(002), (200)} at angles ranging from 44
o
-

46
o
 as evident from fig.1 which indicates that the 

ceramic also possess an O-phase corresponding to 

(PDF#81-2200) [21].  Also, it is noticed that 

three peaks at 56
o
 in x=0 sample which corresponds 

well to the standard card (PDF#81-2200), which 

further confirms the existence of O-phase in pristine 

BaTiO3 [21]. 

However, with the introduction of Ce into the 

lattice of BaTiO3, the diffraction peaks around 44
o
-

46
o 

merge into a single peak, suggesting that the host 

phase undergoes an obvious phase transition. These 

three peaks at 56
o
 also merge into a single peak for all 

Ce added samples under study. Apart from the 

structural phase transition, we also noticed a gradual 

shift of diffraction peak towards lower angle with 

increasing x content. It could be due to the 

replacement of larger ion Ce
4+

 (r=0.87 Å) for Ti
4+

 

(r=0.6507Å) at the B site of perovskite structure [17]. 

Hence, in the present work, XRD is limited 

only to confirm the phase as the main focus of this 

article is to explore these materials for specific 

properties as discussed in subsequent sections. 

However, we believe a detailed discussion on XRD 

analysis is required to understand the structural 

evolution.  
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Fig 1: X-Ray Diffraction Patterns for BaCexTi1-

xO3 (BCT) Ceramics with Compositions x=0, 0.1, 

0.12 and 0.15 

 

 
 

Fig.2: SEM Images of Sintered Sample (a) 

x=0, (b) x=0.1, (c) x=0.12 and (d) x=0.15 

 

 

 

Fig 3: Polarization-Electric Field (P-E) Hysteresis 

Loops of Sintered Sample at Room Temperature 

(303K)and Constant Electric Field of 24kV/cm 

 

 
 

 The scanning electron microscopy (SEM) 

images of all the investigated compositions exhibit 

well interconnected grains and without major voids or 

anomaly, having a bimodal grain size distribution 

(larger grains coexist with smaller grains) as shown in 

figure 2. With Ce addition, a further increase of larger 

grains on the expense of smaller grains takes place 

which is in agreement with the work reported by 

Curecheriu et.al.[15]. Further, the densities of 

BaCexTi1-xO3 sintered ceramics were found 

employing Archimedes principle and the relative 

densities were all >93% for all compositions. 

 Figure 3 shows the P-E hysteresis loops of 

Ce doped BaTiO3 ceramics at constant electric field 

of 24kV/cm and at room temperature. All the 

investigated materials show well-saturated loops 

indicative of classical ferroelectric-like loops. The 

remnant polarization (Pr) and coercive field (Ec) 

values are ∼7 μC/cm
2
 and ∼3.5 kV/cm, respectively, 

for base composition x=0. Hysteresis loops become 

thinner and thinner as the content of Ce increases 

accompanied by a fast drop of Ec. Such a low value 

of Ec suggests that the compositions are soft with 

respect to electric field.  

 

Fig 4: Dielectric Constant and Dielectric Loss 

(tanδ) for all Compositions x=0, 0.1, 0.12 and 0.15 
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Fig 5: Curie Weiss Law for all Inveastigated 

Samples. 

 

 

 

Fig 6: Curie Temperature as a Function of Ce 

Content foar all Samples 

 

 
 

 

 Figure 4 shows the temperature dependence 

of dielectric constant and dielectric loss (tan δ) for all 

BCT ceramics measured at various frequencies. It can 

be deducted from figure 5 that Curie temperature 

decreases when the content of Ce increases. One of 

the intriguing characteristics of normal ferroelectric 

ceramic is that they are suspected to obey Curie–

Weiss law under the application of high temperatures 

(above Curie) and they follow Eq.1: [22]. 

 

Fig 7: Piezoelectric Constant (d33) for all Samples 

 

 

    (1) 

Where C stands for Curie –Weiss constant, 

TCW is the Curie–Weiss temperature and ɛ is dielectric 

constant. This study will be helpful to further analyse 

the phase transition behaviour. The Curie–Weiss 

constant reflects the nature of the ferroelectric 

transition. As C is of the order of 10
5o

C, the high 

temperature paraelectric phase is driven by a 

displacive transition, and with 10
3 

°C order, the 

transition will be more likely to be order-disorder [22, 

25-27]. In BCT system, all C are of the order of 10
5
 

°C, suggesting that the high temperature paraelectric 

phase is driven by a displacive transition. In order to 

make the value of TCW certain, the inverse of 

dielectric constant (1/ε) versus temperature (T) at 1 

MHz is plotted as portrayed in fig. 5 (a)-(d). It is 

found that the dielectric permittivity of pure BT 

ceramics well obeys the Curie–Weiss law above the 

Curie temperature. However, the dielectric 

permittivity of BCT ceramics obviously deviates 

from the Curie–Weiss law when the content of Ce 

increases. This deviation from the Curie–Weiss law 

can be mathematically expressed as follows: [22, 23, 

29]. 

   (2) 

Where Tm stands for temperature 

corresponding to peak of dielectric and TB stands for 

the temperature from which the dielectric permittivity 

starts to follow the Curie–Weiss law. This 

temperature is referred to as Burns’ temperature. The 

temperature associated with peak of dielectric (Tm) is 

395 K (pure BT) which can be decreased to 330 K 

upon addition of 15% Ce content. On similar 

grounds, TCW also decreases from 389 K to 341 K. It 

can be said that the phase transition temperature 
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range (around Tm) becomes lower and broadening 

increases with increase in Ce content which can be 

credited to phase change: from ferroelectric to 

diffuse. Hence, to study the phase transition 

behaviour of BCT specimens, a diffuseness parameter 

is estimated using modified Curie–Weiss relationship. 

Modified Curie–Weiss law is explained using the 

dielectric behaviour of complex ferroelectrics with 

diffuse phase transition, which can be expressed as 

shown in Eq.3. : [24]. 

   (3) 

Where C
'
 is assumed to be constant, ɛm is 

dielectric maximum and γ is the diffusion coefficient. 

The symbols ɛ and Tm have their usual meaning as 

described above. Generally, the value of γ lies 

between 1 (conventional ferroelectric) and 2 (relaxor 

ferroelectric): [22, 23, 28]. In order to further confirm 

the effect of Ce content on the diffuse phase 

transition behaviour of the investigated chemical 

composition ceramics,  is plotted against 

 at frequency 1 MHz as shown in the insets 

of fig. 5 (for x=0.12 and 0.15). It is imperative to note 

here that a linear relationship can be seen for all 

specimens. γ value is found from the slope of the 

fitting curves. It is found that the γ value increases 

from 1.26 to 1.89 with increasing x value. 

Additionally, the degree of diffusivity for phase 

transition can be formulated in terms of an empirical 

parameter ΔTdiffuse as shown by Eq.4: [24]. 

  (4) 

Where represents temperature 

corresponding to 90% of maximum dielectric 

constant (ɛm) at 1 MHz. It clearly manifests that 

diffusivity increases with Ce content. However, 

further research is warranted to clarify the nature of 

these phase transitions. 

 

4.0 Conclusions 

 

Systematic investigation of structural and 

dielectric performance of Ce substituted BaTiO3 

[BaCexTi1-xO3 (BCT)] ceramics with compositions 

x=0, 0.1, 0.12 and 0.15 was investigated in detail. 

Addition of Cerium into the lattice of BaTiO3 resulted 

in increase in lattice constants. The Ce substitution 

diffused the phase transition of BaTiO3 and resulted 

in decrease of Curie temperature which is confirmed 

from the dielectric measurements in BaCe0.15Ti0.85O3. 

Degree of diffusivity was found to increase from 1.26 

to 1.89 for x=0.15. Further d33 was found to be larger 

for x=0.1 sample which could be advantageous for 

many piezoelectric applications. 
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