M.
A
TJARI

Article Info

International Journal of Advance Research and Innovation
Vol. 7(2), Apr-Jun 2019, pp. 36-42

Doi: 10.51976/ijari.721905

www.gla.ac.in/journals/ijari

© 2019 1JARI, GLA University

Received: 10 Jan 2019 | Revised Submission: 20 Mar 2019 | Accepted: 28 May 2019 | Available Online: 15 Jun 2019

Live Monitoring for Forensic Artifacts from IM Messenger Packets Using Freeware

Sankarshana Kadambari*, Bhupendra Singh Chauhan** and Mohit Soni***

ABSTRACT

Numerous smartphone applications such as snapchat pose a major problem for a network administrator, as the
chat gets deleted automatically removing every evidence of a conversation. It becomes difficult for an
administrator to confirm whereabouts of a captured packet belonging to an IM application. However, if the
same is captured in real time using Wireshark-a detailed analysis of the protocols would reveal information
regarding the source of packet generation. This paper emulates a closed environment and uses freeware to
capture encrypted packets from instant messengers and attempts to produce sufficient artifacts, so as to pin

point the sender.

Keywords: Wireshark; Network Forensics; SnapChat; Controlled Environment; IM Packets; QUIC; STUN.

1.0 Introduction

Network or protocol analyzer is a program that
runs on a device that is connected to the network, it
passively receives all data link layer frames passing
through the device’s network adapter. The analyzer
captures the data that is addressed to other machines,
saving it for later examination [1]. One of the
freeware used in the research is JWireshark. It is
having an interactive GUI which displays all the
packets in order, it has many filters available which
are in the form of protocols. There are color codes
present for various protocols such as green for TCP
packets, dark blue for DNS packets, light blue for
UDP packets, and black identifies TCP packets with
glitches. In this paper, Wireshark observes traffic that
passes through mobile hotspot created on laptop and
the packets which belong the concerned application
are sorted out. Then the relevant information is
analyzed with the help of protocols.

Instant Messaging applications are commonly
used by wide range of Internet users. These Instant
messaging applications are also used in Smartphones
these days, they are known as Apps. Any data that
travels in a form of packets over a network can be
viewed using Network Protocol Analyzer and they
can be recorded, monitored also in some cases read.
The recorded data is used lawfully by a network
administrator to monitor and troubleshoot network

traffic. Using the information captured by the

freeware an administrator can identify inaccurate

packets[1].

Any traffic analysis can be classified into three
types: real-time analysis, batched analysis and
forensics analysis [2].

o Real-time analysis: It is performed on data that is
obtained or using small batches also known as
buffers to efficiently analyze data. The response
time of this kind of analysis is understood by
time elapsed which is either computed or
detected. Real time analysis has generally high
computational resources requirements. (2)
Batched analysis: Batched analysis performs
analysis periodically, where the period is enough
to collect data in also known as data batches.
Depending on the batching policies the response
time and related computational resources
requirements may be higher or lower, but in
general they propose a higher response time and
lower computational resources necessities than
real -time examination (although they require
larger storage size).

« Forensics analysis: Forensics analysis is analysis
done when a certain event occurs. An example of
forensics analysis is the investigation performed
when an intrusion is noticed to a host who is
associated to the network. This kind of analysis
require that data had been previously stored to be

*Corresponding Author: Department of Computer Science, ASET, Amity University Haryana, India

(E-mail: mohit.soni@outlook.com)

**Division of Research and Development, Lovely Professional University, Punjab India
***Division of Research and Development, Lovely Professional University, Punjab India

Live Monitoring For Forensic Artifacts from IM Messenger Packets Using Freeware | 37

analyzed, and may also require of human
intervention. Network data examination
techniques obtain information of network data by
inspecting network header fields of each packet,
calculate them and produce outcomes or results.
Packet in which packets are decoded and
presented in a comprehensible way. Network
analyzers like tcpdump, Wireshark are some
examples of packet Interpreting applications[2].
In this paper, forensic analysis has been
performed and forensics

1) Sender information.

2) Time stamps of packets.

3) Important protocols such as handshake and their
timestamps

4) artifacts which are considered here are: -

2.0 Network Analysis Experimental Setup

To intercept the network traffic, wireless
access point was created to which both mobile
devices were connected. This was established using
the Windows 10 Virtual Wi-Fi Miniport Adapter
feature. This feature enables users to create a virtual
network that perform as a wireless access point for
numerous devices. To do this, the host computer was
linked to the Internet via an Ethernet cable so that the
wireless card was not in use. The Ethernet connection
was established to part its Internet access with the
virtual Wi-Fi Miniport Adapter. Command netsh
wlan set hosted network mode = allow ssid test key =
1234567890 was executed to setup the virtual
network. The network was then enabled using the
command netsh wlan start hosted network. Next, the
network traffic was recorded to and from the mobile
devices by capturing data sent over the virtual
connection. The number of packets dropped and the
capture rate were not recorded, as it was not relevant
to the goal of this research. Wireshark was used to
capture and analyze the network traffic[3].

This set up is shown in Fig 1.

3.0 Emulation of the Problem

Initially in the procedure we must analyze the
recorded data for the registered mac address. Let us
consider 2 devices namely “A” & “B”, their Wi-Fi
Mac address and the consumed bytes are mentioned
in the figure 2.

Now the second step involves the identification of
server which can also be recognized with the help of

endpoints feature in Wireshark and we can further
confirm it from web as shown in Fig.3 & Fig 5
displays the SYN packet and & Fig 6 displays [SYN,
ACK] packet with timestamp.

Fig 1: Setup for Capture

) =L

D WIRE SHARK

Fig 2: Endpoints of MAC

Hhenet3 FhveChame F001 30 1P Y 1A NCP REVP SCTP TR Tobenfing DR LSH WLAN
et Endpints
bifes 1l s ik 4 Tabts { RPackets 4 Rubytes !
L] e n BB

W31k 17 L

;i 1 W 1w
DneghsT LT m 188 n e 1 13104

Fig.3: Server Address

¥ilknerdiion [Int gl

W om

Fig.4: Server Address Confirmed

IP address 104.193.187.5

Address type P @ +

ISP Snapchat i
Organization
Timezone

Local time
Country

State / Region
Distrct / County
ity

Zip / Postal code

Coordinates

38 | International Journal of Advance Research and Innovation, Vol 7(2), Apr-Jun 2019

Fig 5: Packet Sent by "A”

F Frane 3310 74 bytes on wire (392 bits), 74 bytes captured (592 bits) on interface 0
v ethernet 1, St S4:27:58:d3:1ibF (34:27:58:03:10:0F), st d:7e:35:27:a0:5d (d2:7e:38:27:a9:50)
R Internet Protocol Version 4, Src: 192,168,137, 244 (192.168.137.244), Dst: 104.193.187.5 (104.193.187.5)
- Transmissfon Contral Protocol, Src Port: 40697 (40897), st Port: 443 (443), 5eq: 0, Len: 0
Source Port: 40637 (40697)
Destination port: 443 (43)
[stream index; 51]
[Tee seguet: Len: 0]
Sequence nuber: 0 (relative sequence nuber)
Acknonedgment. rumber: 0
feader Length: 40 bytes
< e 000 0000 0020 = Flags: 0002 (SW)
Windon size value: 65335
[calcuTated window size: 63533]
B Checksum: Oxfez [validation disabled]
rget. patner: 0
E Options: (20 bytes), Waxinun seguent size, SACK permitted, Tinestanps, No-Operation (MIP), Window scale
2 Maxinum sequent size: 1460 bytes
2 TCP SACK Permitted Option: True
= Tinestams: Taval 10598697, Taeer 0
Kind: Tine stzap Option (F)

Tinestanp echo regly: 0
= o-Operation (MOF)
@ window scale: § (ltiply by &)

Fig 6: ACK Packet Sent by Server

T t B on interface 0
E Ethernet 11, Src: d2:7e:35:27:39:54 (d2:), Dst: 54:27:58:d3:1c:bf (54:27:58:03:1c:bF)
E Internet Protocol Version 4, Src: 104.193.187.5 (104.193.187.5), Dst: 192.168.137.244 (192.168.137.244)
 Transmission Control Pratocal, Src Port; 43 (43), Ost port; 40697 (40697), seq: 0, Ack: 1, Len: 0
source Port: 443 (443)
Destination Port: 40697 (40697)
[Stream index: 1]
[TCP Seguent Len: 0]
Sequence number: 0 (relative sequence nuaber)
Acknowledguent munber: 1 (relative ack nunber)
Header Length: 40 bytes
0010 = Flags: 0x012 (SN, ACK)
windon 5ize value: 28960
[calculated window size: 28960]
Chacksun: 0¢7909 [validation disbled]
Urgent puinter:
= ogtions: (20 bytes), Maximum seguent 5ize, SACK permitted, Timestanps, No-Operation (NP}, window scale
& Waximun sequent size: 1440 bytes
& TCP SACK Permitted Option: True
= Tinestamps: Tsval 789119064, Tsecr 10395697
kind: Tine Stamp Option (8)
Length: 10
Timestanp value: 789119064
Tinestanp echo reply: 10593697
¥ No-Operation (W0P)
& Window scale: 7 (mTtiply by 128)
3 [sEQ/Ack analysis]
This 15 an ACK to the seqnent in frame: 3371
[The RIT to ACK the seqnent was: 0.271019000 seconds]
[iRTT: 0.2727%4000 seconds]

Fig.7: Client Hello by "A™

BANG10 2 Client Hello
4 Frane 3329: 195 bytes on wire (1560 bits), 195 bytes captured (1560 bits) on interface 0
% Ethernet I1, Src: 54:27:58:d3:1c:bf (54:27:58:03:1c:bf), Dst: d2:7e:35:27:29:5d (d2:7e:35:27:29:5d)

% Internet Protocol version 4, Src: 192.168.137.244 (192.168.137.244), Dst: 104.193.187.5 (104.193.187.5)
3 Transmission Control Protocol, Src Port: 40697 (40697), Dst Port: 443 (443), Seq: 1, Ack: 1, Len: 129
source Port: 40697 (40697)
Destination port: 443 (443)
[5tream index: 51]
[TcP Sequent Len: 129]
Sequence number: 1 (relative sequence number)
[Next sequence number: 130 (relative sequence rumber)]
Acknowledgnent number: 1 (relative ack nusber)
teader Length: 32 bytes
B 0000 0001 1000 = Flags: Ox018 (PSH, ACK)
window size value: 1369
[calculated window size: 87616]
[Window size scaling factor: 6]
& Checksum: 0xb24d [validation disabled]
Urgent pointer: 0
Options: (12 bytes), No-Operation (NOP), No-Operation (NOR), Timestanps
& No-Dperation (0P
& No-Dperation (0P
2 Timestamps: Tsval 10395724, TSecr 780119064
Kind: Tise Stamp Option (8)
Length: 10
Timestamp value
Timestanp echo rep
= [sEQ/ack analysis]
[ARTT: 0.272794000 seconds]
[Bytes in flight: 129]
3 Secure Sockets Layer
E TLSVL.2 Record Layer: Handshake Protocol: Client hello
Content Type: Handshake (22)
version: TLS 1.0 (0x0301)
Length: 124
i Handshake Protocol: Client Hello

Fig.8: Server Hello

Hello

& Frame 3333: 139 bytes on wire (11152 bits), 13% bytes captured (11152 bits) on interface 0
7 Ethernet II, Src: d2:7e:35:27:a9:5d (d2:7e:35:27:29:5d), Dst: 54:27:538:03:1c:bF (54:27:58:d3:1c:bf)
Internet Protocol Version 4, Src: 104.193.187.5 (104.193.187.5), Dst: 192.166.137.244 (192.168.137.244)
o Transmission control protocol, Src Port: 443 (443), Dst port: 40697 (40697), Seq: 1, Ack: 130, Len: 1328
source Port: 443 (43)
pestination port: 40697 (40687)
[stream index: 51]
[TcP Segment Len: 1328]
Sequence number: 1 (relative sequence number)
[Mext seguence mumber: 1329 (relative sequence number)]
Acknowledgment number: 130 (relative ack number)
Header Length: 32 bytes
... 0000 0001 0000 = Flags: L0 (ACK)
Window size value: 235
[calculated window size: 30080]
[window size scaling factor: 128]
Checksum: 0x7e33 [validation disabled]
Urgent pointer: 0
= options: (12 bytes), No-Operation (NOP), No-Operation (MOP), Timestamps
& No-operation (NoP)
= No-Operation (NOP)
& Timestamps: TSV
Kind: Time 5tamp option
Length: 10
Tinestanp value: 789119132
Timestanp echo reply: 10395724
o [seq/ack analysis]
[iRTT: 0.272794000 seconds]
[Bytes in flight: 1328]
TCP sequent data (1262 bytes)
5 secure Sockets Layer
2 TLSV1.2 Record Layer: Handshake Protocol: Server Hello
Content Type: Handshake (22)
version: TLS 1.2 (0x0303)
Length: 61
& Handshake protocol: server kello

Live Monitoring For Forensic Artifacts from IM Messenger Packets Using Freeware | 39

Fig 9: Certificate Sent by Server

Fig 11: Client Key Exchange, Change Cipher Text

& Frane 3334: 1391 bytes on wire (11132 bits), 133 bytes captured (11152 bits) on interface 0

& Exhiernet 11, Sec: dl:7ecdss

et (e, i ST S B (TS E Frame 3342 192 bytes on wire (1536 bits), 192 hytes captured (1536 blts) o interface 0

< Irtarvet rococal Vesion 4, e 1013675 (104.15,087.5), st 19036857, 24 (190,168,037, 24) 7 Ethernet IT, Src: 54:27:58:d3:1c:bf (54:27:38:03:1:bf), Dst: d2:7:35:27:0:50 (d2:7e:35:27:28:54)

& Trasissfon Control ratocol, Src Port: 43 (463), Ot et 40GDT (A0GAT), Seq: 1308, Ack: 130, Len: 138 & Internet Protocol Version 4, Src: 192,168,137, 244 (192.168.137. 244), Dst: 104.193.187.5 (104.193.187.5)

- [fesallel T s (18 b 5200, £330 & Transnssion Comrol protocal, Src s 40607 (ADGWT), st Part: 443 (43), seq: 130, ack: 2809, Len: 106
‘stl.. uewd Laynr: Handsheke Prtocal: Certificat - SeTE SICKES Lajer

Contat Tyge: wndshike (22)

5L, Record Layer: Handshake Protocol: Client Key Exchange
Verston: TS 1.2 ([303)

Content Type: Handshake (22)
Legth: 410 y Version: 5 1.2 (10303)
= Handshake Prozocal: Certificate Length' 0
Yendshake Type: certificate (1) s)
Lot m{“ ' = Handshake Protocol: CTient Key Exchange
certificas Length: 103 Hendshake Type: Client Key Exchange (1)
3 Certificates (2403 bytes) Length: i
certificate Length: 1270 e mizn :
= Certificate (fd-at-comankane=*, aadlive, To, id-at-organizationa nit¥ase=donain Contral Validated) 2 Diffietellnn Cliem Paress
= signedtertificate FUthV Lenﬂth: £
v 3 () Pubkey: (4823047 calactbsas231abodat 7205931 sBalazedf e, .
“,"a’"‘"f’h;”mi"”mgﬁ?“m“ﬂ““”“'m 2 TLSWL.2 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec
@ stgatre (SR RSEtio] B TLSVL.1 Record Layer: sandshake Protacol: RuTtiple Kandshake Wessages
& Tssuer: rirsaquence (1)
B alidity
& subject: rdnsequence (1)
2 subjecthublickeyinfa
2 alyprithn (rsaEncrypeion) .) . .
i 0 Fig 12: Application Data Sample 1
subjectubTictey: IR EDOLILOEE 02 EeS AU LT TS .

2 extensions: § ites
& algorittardentifier (shazsfithRSAEncryptian)

Faiing: 0 _ _ -

encypte o173 36t e TS . Frane 3367 9 bytes on wire (792 bits), %h]r[as (ap[ured 1 bits) on interface

Grtifie g iy e ey TR AT rhE (TSR o hE mere ATeTaed8e)T ea0eEA (707006 7090
= Certificate (w‘d:at-tormnhan%ﬁ'thalslg'l Donzn Ve idarion ¢4 - Sha36 - 62, id-at-organizationnanesSlabalsion m-se, d-at-coumnryhane=ie) i et 1, 5% sl (5“1' E.di.l[.hf) It L3507 (Iﬂ.?!.ﬁ.z 'agjd)

3 sieicertificae ® Interret Protocol Version 4, Src: 192,168,137, 244 (192.168.137.244), tst: 104,193.187.5 (104, 193.187.5)
Z:ﬂ;;ﬁd“mﬁ” shasttassenrygeion) Transwission Control Fratocol, Src Part 40637 (40807), Ost Port: 43 (43), Seq: 286, Ack: 3055, Lem: 33
e ST TS S 2 Sere Sockets Layer

£ TLSVL.D Recard Layer: Apglication Data Protocal: spdy
. . Comet Type: Application Datz (23)
Fig.10: Server Key Exchange Jersion: 15 1.2 (03)
Length: 26

Encrypted Application Data: 00D00DOD0O0DOONLGSF9983:a00bT L 7a7dBaseAfbeir ..

A Frane 3335 238 bytes on wire (1904 bits), 238 bytes captured (1904 bits) on interface 0 ; —
m Ethernet 17, Srce dL:7e:35:27:20:50 (d2:7e:35:27:a0:50), sty S4:27:58:03:1c:bf (54:27:58:d3:1c:b) %?g gﬁs? ig 2; :gggm; 52 Ei 1; gggm;mj 'CS @]g :ﬁ
& ntemnet rotocol Version &, Src; 104,198,067, 5 (004.198.167.5), D5t: 192168137 244 (190,168 137, 24 ui B BoLER

A Transmission Control Protocol, src Port: 443 (43), Dst Port: 40697 (40697), Seq: 2657, Ack: 130, Len: 17) %ﬁg gg gé gs Tg gégggi H ?}E gi%ﬁggg Eg mg .
8 [2 Reassentled TCP Seguents (338 bytes): #3334(173), #3335(163))] 70100 1 7 00
A Secure Sockets Layer
2 TLSL2 Record Layer: Handshake Pratocol: Server Key Exchange
Content Type: Kandsheke (22)
Version: L5 1.2 (0:0303)
Length: 333
= Fandshake Protocol: Server Key Exchange
Handshake Type: Server Key Exchange (12)
Length: 320
5 EC Diffie-tellnan Server Parans

: 03 : . b
g;:; gf:e:":zigg:;:e(ﬂ[lémg) T Frae T T Yyies on ire (31 s, 738 By caped (510 Bis) o e 0
Pubkey Length: 65 _ i Ethernet 11, Sre: S27ShbAcetf (e ddidch), ost: dTeelnabsd (d:7e: 3 0nalis)
Lo A el L R R Ienet Protcs] Verson 4, 5, 19168, 037,24 (1S 68.03,24), Ot 104980675 (1. 19.187.5)
R Signature Hash Algarithm: 0x0601 = - : : - :
Sigaure Length: 26 & Tratatssion Cotrol Protocal, S Pore: 4067 (KOWY), s Port: 43 (443, S 280, Ak 305, Lem: 673
Signature: DoaldT10471CO09CIFd381 22036 04T 30cSEeadcdfared . - Secire Sockets Layer
F Secure Sockets Layer ey S T ,
2 TLSVL.2 Record Layer: andshake Protocol: Server Hello Done sl Recurd‘Layer: Ap'?hmw” W ot
Content Type: Handshake (22) (artent WPE‘ &pphcatwn leta (H)
Version: L 1.2 (1a0303) Version: 15 1,2 (h033)
Lo ¢ Legt 6%
= handshake Protocol: Server Hello Done ——— T T T
st e sever el lo e (1) Encrypeed Agplication Bta: O D302 6T aBbaddatTeacd..

Length: 0

International Journal of Advance Research and Innovation, Vol 7(2), Apr-Jun 2019

Fig 14: ACK for Application Data

1 Frane 3385: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on imterface 0
& Ethernet 11, Src: d2:7e:35:27:29:5d (d2:7e:35:27:29:5d), Dst: $4:27:38:d3:1C:bf (54:27:58:d3:1C:bf)
% Internet Protocol Version 4, src: 104.193.187.5 (104.193.187.5), Dst: 192.168.137.244 (192.168.137.244)
£ Transmission Contral Protocal, Src Port: 443 (443), Dst Port: 40697 (40697), Seq: 3055, Ack: 962, Len: ()
source Port: 443 (443)
Destination Port: 40697 (40637)
[Strean index: 51]
TP Sequent Len: 0]
Sequence number: 3035 (relative sequence nuaber)
AcknowTedgnent nunber: 962 (relative ack nuber)
Header Length: 32 bytes
... 0000 0001 0000 = Flags: 0x010 (ACK)
Window size value: 246
[calculated window size: 31488]
[window size scaling factor: 128]
& Checksum: 0x071a [validation disabled]
Urgent pointer: 0
= options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestasps
& No-Operation (Nop)
@ No-Operation (NOP)
3 Tinestanps: Tsval 789119272, TSecr 10395780
kind: Tine stamp option (8)
Length: 10
Tinestanp value: 789119272
Tinestanp echo reply: 10395780
B [SEQ/ACK analysis]

After analyzing A’s initial activity there were
also binding request made by A shown in

4.0 Inference

As discussed about there are two devices
namely A and B in a controlled environment where Ip
address of A=192.168.137.244 ,Ip address of B is
192.168.137.244.From Fig.3 & Fig.4 it is confirmed
that the server address is 104.193.187.5.

The first device to initiate the connection with
server is A as seen in Fig.5 and it establishes a 3-way
TCP handshake which consist of SYN,SYN-
ACK,ACK the time stamp value for ACK are in
Fig.6 . The TCP handshaking mechanism is designed
so that two computers/devices trying to communicate
can negotiate the parameters of the network TCP
socket connection before transmitting data[4].

The first message is the Client Hello. Since the
client machine is requesting the secure
communication session, this message involves a set
of choices that the client is willing to use to
communicate with the server.

The option categories are: Version of SSL to
be used, Cipher Suites supported by the client, and
Compression Methods used by the client. Other
information that is included in this message is a 32-
byte Random Number that assists the client in
establishing encrypted communications, and a
SessionID field that is blank (5).

Fig 15: Binding Request Made by A

= Session Traversal utilities for NAT
Response In: 3401
= Message Type 0x0001 (Binding Request)
....... . = Message Class: 0x0000
[Request (0)]

.00 000. 000. 0001 = Message Method: 0x0001
[B'indw‘r'lg (0x001)]
.00 ... o... ... = Message Method Assignment: 0x0000

[IETF Review (0)]

Message Length: 96

Message Cookie: 2112a442

Message Transaction ID: belf2febb516d30c966T69bf
= Attributes

USE-CANDIDATE

PRIORITY

ICE-CONTROLLING
[l USERNAME : simh3DgMhacb46uv:osni4swdxaudplkz
Attribute Type: USERNAME (0x0006)
Attribute Length: 33
username: simh3DgMhach46uv:osnidswdxaudplkz

Padding: 2
] MESSAGE-INTEGRITY
Attribute Type: MESSAGE-INTEGRITY (0x0008)
Attribute Length: 20
HMAC-SHAL: 99f3f77eed14cf795032310ed3c832cdf57hIbbba
FINGERPRINT

0000 d2 7e 35 27 a9 5d 54 27 58 d3 1c bf 08 00 45 00
0010 00 90 57 fd 40 00 40 11 73 fc c0 a8 89 f4 68 c1
0020 bb 05 d4 b6 0d 96 00 7c 3e da 00 0L 00 60 21 12
0030 a4 42 be 1f 2f eb b5 16 d5 Oc 96 6f 69 bf 00 25
0040 00 00 00 24 00 04 7e ff ff ff 80 2a 00 08 00 00
0000 00 00 00 00 00 06 3

61 63 62 34 36 53 76
1! 61 55 64 .'D 6c_6b 53] ZO 20 00 08
0080 00 14 99 cf 79 50 33 10 ed 3c 83
0080 2c df 57 bg bb ba 80 28 00 04 39 44 dé 05

J

Fig 16: Binding Response by Server

244 STUN 74 Binding Succ nse XOR-MAPPED-ADOR
o Frame 3395: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface 0
@ Ethernet II, Src: d2:7e:35:27:29:5d (7:29:50), Dst: 54:27:58:d3:1c:bf (54:27:58:d3:1c:bf)
% Internet Protocol Version 4, Src: 104,193.187.5 (104.193.187.5), Dst: 192.168,137,244 (192.168.137.244)
% User Datagram Protocol, Src Port: 3478 (3478), Dst Port: 55602 (55602)
sessmn mwrsﬂ utilities for AT

mre 0.2 0999000 seconds]
= Message Type: 0x0101 (Binding Success Response)
coee el 000 L. = Message Class: 0x0010
[Success Response (Z)
..00 000. 000. 0001 = Message Method: 0x0001
[Bmdlnq (0x001)]

= Message Method Assignment: 0x0000
[vm nenen (0)]
Message Length: 12
Message Cookie: 2112a442
Message Transaction ID: 604f52dffa06d9a74%4esbc?
5 Attributes
= XOR-MAPPED-ADORESS: 146.196.34.202:62602
% Attribute Type: XOR-MAPPED-ADORESS (0x0020)
Attribute Length: 8
Reserved: 00
protocol Family: Ipv4 (0x01)
port (XoR-d): ds98
[Port: 62602]
1P (Y0R-d): b3d68688
[1P: 146.196.34.202 (146.196.34,202)]

The second message consist of SSL handshake
is the Server Hello. In this message, the server makes
choices based on the Client Hello message and makes
firm decisions on the Version of SSL to be used, the
Compression Method and Cipher Suite [5].

Similarly, A also generates Certificate and
agrees with server how data will be encrypted as
shown in Fig.9 ,the screenshot also has the public key
and the certificate can also be extracted on the local
pc. After this A generates ClientKeyExchange
message contains information about the key that the
client and server will use to communicate. This is the
point where man in the middle can be performed [6].

Live Monitoring For Forensic Artifacts from IM Messenger Packets Using Freeware | 41

Fig.12 and Fig.13 shows the sample
application data sent by A to SnapChat server and the
acknowledgment received from the server Fig.14.
Device A also makes binding request to the Snapchat
server using STUN protocol. One of the two major
fields in STUN is Username and Message Integrity.
The USERNAME attribute is used for message
integrity. It identifies the username and password
combination used in the message-integrity check.
The value of USERNAME is a variable-length value.
It MUST contain a UTF-8 [RFC3629] encoded
sequence of less than 513 bytes, and MUST have
been processed using SASL prep (RFC4013)[7]. In
our case A’s username is

“simh3DgMhacb46Uv:Osni4swdxaUdplkZ”.
The MESSAGE-INTEGRITY

attribute contains an HMAC-SHA1
[RFC2104] of the STUN message. The MESSAGE-
INTEGRITY attribute can be present in any STUN
message type. Since it uses the SHAL hash, the
HMAC will be 20 bytes. The text used as input to
HMAC is the STUN message, including the header,
up to and including the attribute preceding the
MESSAGE-INTEGRITY attribute. The key for the
HMAC depends on whether long-term or short-term
credentials are in use. For long-term credentials, the
key is 16 bytes [7]:

key = MD 5 (username " : " realm " : " SAS
Lprep (password))

So, A makes a binding request with user name
and server of SnapChat replies with Binding Success
Response XOR-MAPPED-ADDRESS:

146.196.34.202:62601.

The XOR-MAPPED-ADDRESS attribute is
reflexive transport address is obfuscated through the
XOR function [8-9].The same process is repeated by
device B and the exchange through a common server
of SnapChat with IP: 104.193.187.5. This gives
enough evidence with artifacts that which Server was
A in communication with and parallel to that what
was the corresponding device.

5.0 Conclusions

Sufficient artifacts have been collected to pin
point the sender from Wireshark. The two main
protocols TIs1.2v and STUN have also been covered.

To decrypt a 2048-bit RSA TLS cipher text, an
attacker must observe 1,000 TLS handshakes, initiate
40,000 SSLv2 connections, and perform 2750 offline
work. The victim client never initiates SSLv2

connections. An implementation of the attack and that
can decrypt a TLS 1.2 handshake using 2048-bit RSA
in under 8 hours, at a cost of $440 on Amazon EC2.
Using Internet-wide scans it is found that 33% of all
HTTPS servers and 22% of those with browser-
trusted certificates are vulnerable to this protocol-
level attack due to widespread key and certificate
reuse.

Given an unpatched SSLv2 server to use as an
oracle, TLS cipher text can be decrypted in one
minute on a single CPU—fast enough to enable man-
in-the-middle attacks against modern
browsers/applications. Procedures are easily available
on web for initiating an attack like this.

A solution to this problem might be Quick
UDP Internet Connection (QUIC). As TLS and its
security model use one session key, while QUIC uses
two, and the data may start being encrypted before
the final session key is set. Second, QUIC does not
run on top of TCP and implements many of the
features provided by TCP itself.

This is done primarily for performance
reasons, but QUIC also adds some cryptographic
protection, such as protection against IP spoofing and
packet re-ordering.

References

[1] Arshad Igbal,et al. Network Traffic Analysis
and Intrusion Detection using Packet Sniffer.
Second International Conference on
Communication Software and Networks
2010,.

[2] P Asrodia, H Patel. Network Traffic analysis
using Packet Sniffer. International Journal of
Engineering Research, 2, 2012, 3.

[3] D Walnycky, | Baggili, A Marrington, J
Moore. Network and device forensic
analysis of Android. The International
Journal of Digital Forensics & Incident
Response, 2015, 8.

[4] InetDaemon. TCP 3-Way Handshake
(SYN,SYN-ACK,ACK).
http://www.inetdaemon.com/tutorials/interne
t/tcp/3-way_handshake.shtml.

[5] Sans. Ssl And Tls :Beginner's Guide. 2013.
https://www.sans.org/reading-

42

International Journal of Advance Research and Innovation, Vol 7(2), Apr-Jun 2019

(6]

[7]

room/whitepapers/protocols/ssl-tls-
beginners-guide-1029.

S A Thomas. SSL and TLS Essentials:
Securing the Web. New York: Wiley
Computer Publishing.

J. Rosenberg, R. Mahy,P. Matthews.
Proposed Standard. 10, 2008.
https://tools.ietf.org/html/rfc5389#page-34.

(8]

[9]

N Aviram, S Schinzel, J Somorovsky, N
Heninger, M Dankel. Drown: Breaking TLS
using SSLv2. 2016. 25th Usenix Security
Symposium. p. 18.

Rt Lychev, S Jeroy, A Boldyrevaz. How
Secure and Quick is QUIC? 2015. IEEE
Symposium on Security and Privacy.

