
International Journal of Advance Research and Innovation

Vol. 7(2), Apr-Jun 2019, pp. 36-42

Doi: 10.51976/ijari.721905

www.gla.ac.in/journals/ijari

© 2019 IJARI, GLA University

Article Info

Received: 10 Jan 2019 | Revised Submission: 20 Mar 2019 | Accepted: 28 May 2019 | Available Online: 15 Jun 2019

*Corresponding Author: Department of Computer Science, ASET, Amity University Haryana, India

(E-mail: mohit.soni@outlook.com)

**Division of Research and Development, Lovely Professional University, Punjab India

***Division of Research and Development, Lovely Professional University, Punjab India

Live Monitoring for Forensic Artifacts from IM Messenger Packets Using Freeware

Sankarshana Kadambari*, Bhupendra Singh Chauhan** and Mohit Soni***

ABSTRACT

Numerous smartphone applications such as snapchat pose a major problem for a network administrator, as the

chat gets deleted automatically removing every evidence of a conversation. It becomes difficult for an

administrator to confirm whereabouts of a captured packet belonging to an IM application. However, if the

same is captured in real time using Wireshark-a detailed analysis of the protocols would reveal information

regarding the source of packet generation. This paper emulates a closed environment and uses freeware to

capture encrypted packets from instant messengers and attempts to produce sufficient artifacts, so as to pin

point the sender.

Keywords: Wireshark; Network Forensics; SnapChat; Controlled Environment; IM Packets; QUIC; STUN.

1.0 Introduction

Network or protocol analyzer is a program that

runs on a device that is connected to the network, it

passively receives all data link layer frames passing

through the device’s network adapter. The analyzer

captures the data that is addressed to other machines,

saving it for later examination [1]. One of the

freeware used in the research is]Wireshark. It is

having an interactive GUI which displays all the

packets in order, it has many filters available which

are in the form of protocols. There are color codes

present for various protocols such as green for TCP

packets, dark blue for DNS packets, light blue for

UDP packets, and black identifies TCP packets with

glitches. In this paper, Wireshark observes traffic that

passes through mobile hotspot created on laptop and

the packets which belong the concerned application

are sorted out. Then the relevant information is

analyzed with the help of protocols.

Instant Messaging applications are commonly

used by wide range of Internet users. These Instant

messaging applications are also used in Smartphones

these days, they are known as Apps. Any data that

travels in a form of packets over a network can be

viewed using Network Protocol Analyzer and they

can be recorded, monitored also in some cases read.

The recorded data is used lawfully by a network

administrator to monitor and troubleshoot network

traffic. Using the information captured by the

freeware an administrator can identify inaccurate

packets[1].

Any traffic analysis can be classified into three

types: real-time analysis, batched analysis and

forensics analysis [2].

 Real-time analysis: It is performed on data that is

obtained or using small batches also known as

buffers to efficiently analyze data. The response

time of this kind of analysis is understood by

time elapsed which is either computed or

detected. Real time analysis has generally high

computational resources requirements. (2)

Batched analysis: Batched analysis performs

analysis periodically, where the period is enough

to collect data in also known as data batches.

Depending on the batching policies the response

time and related computational resources

requirements may be higher or lower, but in

general they propose a higher response time and

lower computational resources necessities than

real -time examination (although they require

larger storage size).

 Forensics analysis: Forensics analysis is analysis

done when a certain event occurs. An example of

forensics analysis is the investigation performed

when an intrusion is noticed to a host who is

associated to the network. This kind of analysis

require that data had been previously stored to be

Live Monitoring For Forensic Artifacts from IM Messenger Packets Using Freeware 37

analyzed, and may also require of human

intervention. Network data examination

techniques obtain information of network data by

inspecting network header fields of each packet,

calculate them and produce outcomes or results.

Packet in which packets are decoded and

presented in a comprehensible way. Network

analyzers like tcpdump, Wireshark are some

examples of packet Interpreting applications[2].

In this paper, forensic analysis has been

performed and forensics

1) Sender information.

2) Time stamps of packets.

3) Important protocols such as handshake and their

timestamps

4) artifacts which are considered here are: -

2.0 Network Analysis Experimental Setup

To intercept the network traffic, wireless

access point was created to which both mobile

devices were connected. This was established using

the Windows 10 Virtual Wi-Fi Miniport Adapter

feature. This feature enables users to create a virtual

network that perform as a wireless access point for

numerous devices. To do this, the host computer was

linked to the Internet via an Ethernet cable so that the

wireless card was not in use. The Ethernet connection

was established to part its Internet access with the

virtual Wi-Fi Miniport Adapter. Command netsh

wlan set hosted network mode = allow ssid test key =

1234567890 was executed to setup the virtual

network. The network was then enabled using the

command netsh wlan start hosted network. Next, the

network traffic was recorded to and from the mobile

devices by capturing data sent over the virtual

connection. The number of packets dropped and the

capture rate were not recorded, as it was not relevant

to the goal of this research. Wireshark was used to

capture and analyze the network traffic[3].

This set up is shown in Fig 1.

3.0 Emulation of the Problem

Initially in the procedure we must analyze the

recorded data for the registered mac address. Let us

consider 2 devices namely “A” & “B”, their Wi-Fi

Mac address and the consumed bytes are mentioned

in the figure 2.

Now the second step involves the identification of

server which can also be recognized with the help of

endpoints feature in Wireshark and we can further

confirm it from web as shown in Fig.3 & Fig 5

displays the SYN packet and & Fig 6 displays [SYN,

ACK] packet with timestamp.

Fig 1: Setup for Capture

Fig 2: Endpoints of MAC

Fig.3: Server Address

Fig.4: Server Address Confirmed

38 International Journal of Advance Research and Innovation, Vol 7(2), Apr-Jun 2019

Fig 5: Packet Sent by "A”

Fig 6: ACK Packet Sent by Server

Fig.7: Client Hello by "A"

Fig.8: Server Hello

Live Monitoring For Forensic Artifacts from IM Messenger Packets Using Freeware 39

Fig 9: Certificate Sent by Server

Fig.10: Server Key Exchange

Fig 11: Client Key Exchange, Change Cipher Text

Fig 12: Application Data Sample 1

Fig 13: Application Data Sample 2

40 International Journal of Advance Research and Innovation, Vol 7(2), Apr-Jun 2019

Fig 14: ACK for Application Data

After analyzing A’s initial activity there were

also binding request made by A shown in

4.0 Inference

As discussed about there are two devices

namely A and B in a controlled environment where Ip

address of A=192.168.137.244 ,Ip address of B is

192.168.137.244.From Fig.3 & Fig.4 it is confirmed

that the server address is 104.193.187.5.

The first device to initiate the connection with

server is A as seen in Fig.5 and it establishes a 3-way

TCP handshake which consist of SYN,SYN-

ACK,ACK the time stamp value for ACK are in

Fig.6 . The TCP handshaking mechanism is designed

so that two computers/devices trying to communicate

can negotiate the parameters of the network TCP

socket connection before transmitting data[4].

The first message is the Client Hello. Since the

client machine is requesting the secure

communication session, this message involves a set

of choices that the client is willing to use to

communicate with the server.

The option categories are: Version of SSL to

be used, Cipher Suites supported by the client, and

Compression Methods used by the client. Other

information that is included in this message is a 32-

byte Random Number that assists the client in

establishing encrypted communications, and a

SessionID field that is blank (5).

Fig 15: Binding Request Made by A

Fig 16: Binding Response by Server

The second message consist of SSL handshake

is the Server Hello. In this message, the server makes

choices based on the Client Hello message and makes

firm decisions on the Version of SSL to be used, the

Compression Method and Cipher Suite [5].

Similarly, A also generates Certificate and

agrees with server how data will be encrypted as

shown in Fig.9 ,the screenshot also has the public key

and the certificate can also be extracted on the local

pc. After this A generates ClientKeyExchange

message contains information about the key that the

client and server will use to communicate. This is the

point where man in the middle can be performed [6].

Live Monitoring For Forensic Artifacts from IM Messenger Packets Using Freeware 41

Fig.12 and Fig.13 shows the sample

application data sent by A to SnapChat server and the

acknowledgment received from the server Fig.14.

Device A also makes binding request to the Snapchat

server using STUN protocol. One of the two major

fields in STUN is Username and Message Integrity.

The USERNAME attribute is used for message

integrity. It identifies the username and password

combination used in the message-integrity check.

The value of USERNAME is a variable-length value.

It MUST contain a UTF-8 [RFC3629] encoded

sequence of less than 513 bytes, and MUST have

been processed using SASL prep (RFC4013)[7]. In

our case A’s username is

“simh3DqMhacb46Uv:Osni4swdxaUdplkZ”.

The MESSAGE-INTEGRITY

attribute contains an HMAC-SHA1

[RFC2104] of the STUN message. The MESSAGE-

INTEGRITY attribute can be present in any STUN

message type. Since it uses the SHA1 hash, the

HMAC will be 20 bytes. The text used as input to

HMAC is the STUN message, including the header,

up to and including the attribute preceding the

MESSAGE-INTEGRITY attribute. The key for the

HMAC depends on whether long-term or short-term

credentials are in use. For long-term credentials, the

key is 16 bytes [7]:

key = MD 5 (username " : " realm " : " SAS

Lprep (password))

So, A makes a binding request with user name

and server of SnapChat replies with Binding Success

Response XOR-MAPPED-ADDRESS:

146.196.34.202:62601.

The XOR-MAPPED-ADDRESS attribute is

reflexive transport address is obfuscated through the

XOR function [8-9].The same process is repeated by

device B and the exchange through a common server

of SnapChat with IP: 104.193.187.5. This gives

enough evidence with artifacts that which Server was

A in communication with and parallel to that what

was the corresponding device.

5.0 Conclusions

Sufficient artifacts have been collected to pin

point the sender from Wireshark. The two main

protocols Tls1.2v and STUN have also been covered.

To decrypt a 2048-bit RSA TLS cipher text, an

attacker must observe 1,000 TLS handshakes, initiate

40,000 SSLv2 connections, and perform 2^50 offline

work. The victim client never initiates SSLv2

connections. An implementation of the attack and that

can decrypt a TLS 1.2 handshake using 2048-bit RSA

in under 8 hours, at a cost of $440 on Amazon EC2.

Using Internet-wide scans it is found that 33% of all

HTTPS servers and 22% of those with browser-

trusted certificates are vulnerable to this protocol-

level attack due to widespread key and certificate

reuse.

Given an unpatched SSLv2 server to use as an

oracle, TLS cipher text can be decrypted in one

minute on a single CPU—fast enough to enable man-

in-the-middle attacks against modern

browsers/applications. Procedures are easily available

on web for initiating an attack like this.

A solution to this problem might be Quick

UDP Internet Connection (QUIC). As TLS and its

security model use one session key, while QUIC uses

two, and the data may start being encrypted before

the final session key is set. Second, QUIC does not

run on top of TCP and implements many of the

features provided by TCP itself.

This is done primarily for performance

reasons, but QUIC also adds some cryptographic

protection, such as protection against IP spoofing and

packet re-ordering.

References

[1] Arshad Iqbal,et al. Network Traffic Analysis

and Intrusion Detection using Packet Sniffer.

Second International Conference on

Communication Software and Networks

2010,.

[2] P Asrodia, H Patel. Network Traffic analysis

using Packet Sniffer. International Journal of

Engineering Research, 2, 2012, 3.

[3] D Walnycky, I Baggili, A Marrington, J

Moore. Network and device forensic

analysis of Android. The International

Journal of Digital Forensics & Incident

Response, 2015, 8.

[4] InetDaemon. TCP 3-Way Handshake

(SYN,SYN-ACK,ACK).

http://www.inetdaemon.com/tutorials/interne

t/tcp/3-way_handshake.shtml.

[5] Sans. Ssl And Tls :Beginner's Guide. 2013.

https://www.sans.org/reading-

42 International Journal of Advance Research and Innovation, Vol 7(2), Apr-Jun 2019

room/whitepapers/protocols/ssl-tls-

beginners-guide-1029.

[6] S A Thomas. SSL and TLS Essentials:

Securing the Web. New York : Wiley

Computer Publishing.

[7] J. Rosenberg, R. Mahy,P. Matthews.

Proposed Standard. 10, 2008.

https://tools.ietf.org/html/rfc5389#page-34.

[8] N Aviram, S Schinzel, J Somorovsky, N

Heninger, M Dankel. Drown: Breaking TLS

using SSLv2. 2016. 25th Usenix Security

Symposium. p. 18.

[9] Rt Lychev, S Jeroy, A Boldyrevaz. How

Secure and Quick is QUIC? 2015. IEEE

Symposium on Security and Privacy.

