
International Journal of Advance Research and Innovation

Vol. 7(2), Apr-Jun 2019, pp. 50-56

Doi: 10.51976/ijari.721907

www.gla.ac.in/journals/ijari

© 2019 IJARI, GLA University

Article Info

Received: 13 May 2019 | Revised Submission: 20 May 2019 | Accepted: 28 May 2019 | Available Online: 15 Jun 2019

*Corresponding Author: Department of Electronics and Communication Engineering, Gnanamani College of Technology.

Tamil Nadu, India (E-mail: jloganayakiece@gmail.com)

**Department of Electronics and Communication Engineering, Gnanamani College of Technology. Tamil Nadu, India

(E-mail: vasanthiece@gmail.com)

Image Multiplier Based on Low Power Approximate Unsigned Multiplier

J. Loganayaki* and M. Vasanthi**

ABSTRACT

Approximate circuits have been considered for applications that can tolerate some loss of accuracy with

improved performance and/or energy efficiency. Multipliers are key arithmetic circuits in many of these

applications including digital signal processing (DSP). This multiplier leverages a newly designed approximate

adder that limits its carry propagation to the nearest neighbours for fast partial product accumulation. Different

levels of accuracy can be achieved by using either OR gates or the proposed approximate adder in a

configurable error recovery circuit. The approximate multipliers using these two error reduction strategies are

referred to as AM1 and AM2, respectively. Both AM1 and AM2 have a low mean error distance, i.e., most of the

errors are not significant in magnitude. Compared with a Wallace multiplier optimized for speed, an 8×8 AM1

using four most significant bits for error reduction shows a 60% reduction in delay (when optimized for delay)

and a 42% reduction in power dissipation (when optimized for area). In a 16×16 design, half of the least

significant partial products are truncated for AM1 and AM2, which are thus denoted as TAM1 and TAM2,

respectively. Compared with the Wallace multiplier, TAM1 and TAM2 save from 50% to 66% in power, when

optimized for area. Compared with existing approximate multipliers, AM1, AM2, TAM1, and TAM2 show

significant advantages in accuracy with a low power-delay product. AM2 has a better accuracy compared with

AM1 but with a longer delay and higher power consumption. Image processing applications, including image

sharpening and smoothing, are considered to show the quality of the approximate multipliers in error-tolerant

applications. By utilizing an appropriate error recovery scheme, the proposed approximate multipliers achieve

similar processing accuracy as exact multipliers, but with significant improvements in power.

Keywords: Multiplier; Digital Signal Processing; Optimization.

1.0 Introduction

Approximate computing has emerged as a

potential solution for the design of energy-efficient

digital systems. Applications such as multimedia,

recognition and data mining are inherently error-

tolerant and do not require a perfect accuracy in

computation.

For Digital Signal Processing (DSP)

applications, the result is often left to interpretation

by human perception. Therefore, strict exactness may

not be required and an imprecise result may suffice

due to the limitation of human perception.

For these applications, approximate circuits

play an important role as a promising alternative for

reducing area, power and delay, thereby achieving

better performance in energy efficiency.

As one of the key components in arithmetic

circuits, adders have been extensively studied for

approximate implementation. As the typical

carry propagation chain is usually shorter than the

width of an adder, the speculative adders use a

reduced number of less significant input bits to

calculate the sum bits. An error detection and

recovery scheme has been proposed to extend the

scheme for a reliable adder with variable latency. A

reliable variable-latency adder based on carry select

addition has been presented. As a number of

approximate adders have been proposed, new

methodologies to model, analyze and evaluate them

have been discussed.

A multiplier usually consists of three stages:

partial product generation, partial product

accumulation and a Carry Propagation Adder (CPA)

Image Multiplier Based on Low Power Approximate Unsigned Multiplier 51

at the final stage. In the Under Designed Multiplier

(UDM), approximate partial products are computed

using inaccurate 2 × 2 multiplier blocks, while

accurate adders are used in an adder tree to

accumulate the approximate partial products,

approximate 4 × 4 and 8 × 8bit Wallace multipliers

are designed by using a carry-in prediction method.

Then, they are used in the design of approximate 16 ×

16 Wallace multipliers, referred to as AWTM. The

AWTM is configured into four different modes by

using a different number of approximate 4 × 4 and 8

× 8 multipliers. The use of approximate speculative

adders has been discussed in [10] for the final stage

addition in a multiplier. The Error Tolerant Multiplier

(ETM) is based on the partition of a multiplier into an

accurate multiplication part for Most Significant Bits

(MSBs) and a non-multiplication part for Least

Significant Bits (LSBs). The Static

Segment Multiplier (SSM) utilizes a similar

partition scheme. In an n ×n SSM, an m ×m accurate

multiplier (m-n/2) is used to multiply the m

consecutive bits from the two input operands.

Whether the (n-m) MSBs of each input operand are

all zero determines the selection of the inputs for the

accurate multiplier (m MSBs or m LSBs). These

approximate multipliers are designed for unsigned

operation. Signed multiplication is usually

implemented by using a Booth algorithm.

Approximate designs have been proposed for fixed

width Booth multipliers.

2.0 Literature Review

Generally, a multiplier consists of stages of

partial product generation, accumulation and final

addition. The commonly used partial product

accumulation structures include the Wallace, Dadda

trees and a carry-save adder array. In a Wallace tree,

log2 (n) layers are required for an n-bit multiplier.

The adders in each layer operate in parallel without

carry propagation, and the same operation repeats

until two rows of partial products remain. Therefore,

the delay of the partial product accumulation stage is

O(log2 (n)). Moreover, the adders in a Wallace tree

can be considered as a 3:2 compressor and can be

replaced by other counters or compressors (e.g. a 4:2

compressor) to further reduce the delay. The Dadda

tree has a similar structure as the Wallace tree, but it

uses as few adders as possible. For a carry-save adder

array, the carry and sum signals generated by the

adders in a row are connected to the adders in the

next row. Adders in a column operate in series.

Hence the partial product accumulation delay of an n-

bit multiplier is approximately O(n), longer than that

of the Wallace tree. However, an array requires a

smaller area and thus lowers power dissipation due to

the simple and symmetric structure.

3.0 Classification of Approximation Multiplier

 Approximation in generating the partial products

 Approximation (including truncation) in the

partial product tree

 Using approximate counters or compressors in

partial product tree.

3.1 Approximation in generating partial products

The Under Designed Multiplier (UDM)

utilizes an approximate 2 × 2 bit multiplier block

obtained by altering a single entry in the Karnaugh

Map (K-Map) of its function. In this approximation,

the accurate result “1001” for the multiplication of

“11” and “11” is simplified to “111” to save one

output bit. Assuming the value of each input bit is

equally likely, the error rate of the 2 × 2 bit multiplier

block is (1 2) 4 = 1 16 . Larger multipliers can be

designed based on the 2 × 2 bit multiplier. This

multiplier introduces an error when generating partial

products, however the adder tree remains accurate.

3.2 Approximation in the partial product tree

A bio-inspired imprecise multiplier referred to

as a Broken Array Multiplier (BAM) is proposed.

The BAM operates by omitting some carry-save

adders in an array multiplier in both horizontal and

vertical directions. TheError Tolerant Multiplier

(ETM) is divided into a multiplication section for the

MSBs and a non-multiplication section for the LSBs.

A NOR gate based control block is used to deal with

two cases:

i) if the product of the MSBs is zero, then the

multiplication section is activated to multiply the

LSBs without any approximation

ii) if the product of the MSBs is nonzero, the non-

multiplication section is used as an approximate

multiplier to process the LSBs, while the

multiplication section is activated to multiply the

MSBs.

The Static Segment Multiplier (SSM) was

further proposed using a similar partition scheme.

Different from ETM, no approximation is applied to

the LSBs in the SSM. Either the MSBs or the LSBs

52 International Journal of Advance Research and Innovation, Vol 7(2), Apr-Jun 2019

of each of the operands are accurately multiplied

depending on whether its MSBs are all zeros. Shown

that a small improvement in accuracy and hardware

cost is achieved compared to the ETM, thus this

design is not considered further in the comparison

study. A power and area-efficient Approximate

Wallace tree multiplier (AWTM) is based on a bit-

width aware approximate multiplication and a carry-

in prediction method. An n bit AWTM is

implemented by four n/2-bit sub-multipliers, and the

most significant n/2-bit sub-multiplier is further

implemented by four n/4-bit sub-multipliers. The

AWTM is configured into four different modes by the

number of approximate n/4-bit sub-multipliers in the

most significant n/2-bit sub-multiplier. The

approximate partial products are then accumulated by

a Wallace tree.

3.3 Using approximate counters or compressors in

the partial product tree

In the Inaccurate Counter based Multiplier

(ICM), an approximate (4:2) counter is proposed for

an inaccurate 4-bit Wallace multiplier. The carry

andsum of the counter are approximated as “10” (for

“100”) when all input signals are „1‟. As the

probability of obtaining a partial product of „1‟ is 1 4,

the error rate of the approximate (4:2) counter is (1 4)

4 = 1 256. The inaccurate 4-bit multiplier is then used

to construct larger multipliers with error detection

and correction circuits. In the compressor based

multiplier, accurate (3:2) and (4:2) compressors are

improved to speed up the partial product

accumulation stage. By using the improved

compressors, better energy and delay characteristics

are obtained for a multiplier. To further reduce delay

and power, two approximate (4:2) compressor

designs (AC1 and AC2); these compressors are used

in a Dadda multiplier with four different schemes.

Approximate counters in which the more significant

output bits are ignored are presented and evaluated;

several signed multipliers are also implemented using

these approximate counters. As only unsigned

multipliers are discussed in this paper, the more

accurate schemes 3 and 4 of the approximate

compressor based multiplier (referred to as ACM-3

and ACM-4) in are considered in the comparison. In

the approximate multiplier with configurable error

recovery, the partial products are accumulated by a

novel approximate adder.

The approximate adder utilizes two adjacent

inputs to generate a sum and an error bit. The adder

processes data in parallel, thus no carry propagation

is required. Two approximate error accumulation

schemes are then proposed to alleviate the error of the

approximate multiplier (due to the approximate

adder). OR gates are used in the first error

accumulation stage in scheme 1 (AM1), while in

scheme 2 (AM2), both OR gates and approximate

adders are used. The truncation of 16 LSBs in the

partial products in AM1 and AM2 results in TAM1

and TAM2 respectively.

3.4 Proposed approximate multiplier

A distinguishing feature of the proposed

approximate multiplier is the simplicity to use

approximate adders in the partial product

accumulation. It has been shown that this may lead to

low accuracy, because errors may accumulate and it

is difficult to correct errors using existing

approximate adders. However, the use of the newly

proposed approximate adder overcomes this problem

by utilizing the error signal. The resulting design has

a critical path delay that is shorter than a conventional

one-bit full adder, because the new n-bit adder can

process data in parallel. The approximate adder has a

rather high error rate, but the feature of generating

both the sum and error signals at the same time

reduces errors in the final product. An adder tree is

utilized for partial product accumulation; the error

signals in the tree are then used to compensate the

error in the output to generate a product with a better

accuracy.

The architecture of the proposed approximate

multiplier is shown in figure 1. In the proposed

design, the simplification of the partial product

accumulation stage is accomplished by using an

adder tree, in which the number of partial products is

reduced by a factor of 2 at each stage of the tree. This

adder tree is usually not implemented using accurate

multi-bit adders due to the long latency. However, the

proposed approximate adder is suitable for

implementing an adder tree, because it is less

complex than a conventional adder and has a much

shorter critical path delay.

Exact fast multipliers often include a Wallace

or Dadda tree using full adders (FAs) and half adders

(HAs); compressors are also utilized in the Wallace

or Dadda tree to further reduce the critical path with

an increase in circuit area. These designs require a

proper selection of different circuit modules; for

example, 4:2 compressors, FAs and HAs are

commonly used in a Wallace tree and a judicious

Image Multiplier Based on Low Power Approximate Unsigned Multiplier 53

connection of these modules must be considered in a

tree design. This increases the design complexity,

especially when multipliers of different sizes are

considered; the proposed design is simple for various

multiplier sizes.

Fig 1: An Approximate Multiplier with Partial

Error Recovery

3.5 Error accumulation for approximate

multiplier 1

As shown in Fig. 1, each approximate adder Ai

generates a sum vector Si and an error vector Ei,

where i = 1, 2,…. 7. If the error signals are added

using accurate adders, the accumulated error can fully

compensate the inaccurate product; however to

reduce complexity, an approximate error

accumulation is introduced. Consider the observation

that the error vector of each approximate adder tends

to have more 0‟s than 1‟s. Therefore, the probability

that the error vectors have an error bit „1‟at the same

position, is quite small. Hence, an OR gate is used to

approximately compute the sum of the errors for a

single bit. If m error vectors (denoted by E1, E2,

...,Em) have to be accumulated, then the sum of these

vectors is obtained as

Ei = E1i OR E2i OR ... OR Emi .

To reduce errors, an accumulated error vector

is added to the adder tree output using a conventional

CPA (e.g. a carry lookahead adder). However, only

several (e.g. k) MSBs of the error signals are used to

compensate the outputs to further reduce the overall

complexity. The number of MSBs is selected

according to the extent that errors must be

compensated. Forexample in an 8 × 8 adder tree,

there are a total of 7 error vectors, generated by the 7

approximate adders in the tree. However, not all the

bits in the 7 vectors need to be added, because the

MSBs of some vectors are less significant than the

least significant bits of the k MSBs. In the example of

Fig. 1, 5 MSBs (i.e. the (11 − 14)th bits, no error is

generated at the 15th bit position) are considered for

error recovery and therefore, 4 error vectors are

considered (i.e., the error vectors E3, E4, E6 and E7).

The error vectors of the other three adders are less

significant than the 11th bit, so they are not

considered. The accumulated error E is obtained

using (8); then, the final result is found by adding E

to S using a fast accurate CPA. The error

accumulation scheme is shown in figure 2. As no

error is generated at the least significant two bits of

each approximate adder Ai (i = 1, 2…. 7), the least

significant two bits of each error vector Ei are not

accumulated.

Fig 2: Error Accumulation Tree for AM1

Fig 3: Approximate Multiplier Output

54 International Journal of Advance Research and Innovation, Vol 7(2), Apr-Jun 2019

Fig 4: Proposed Approximate Multiplier Output

5.0 Results

Simulation results are shown by figure 3 and

figure 4 respectively.

6.0 Conclusions

Approximate computing has recently emerged

as a promising approach to energy-efficient design of

digital systems. Approximate computing relies on the

ability of many systems and applications to tolerate

some loss of quality or optimality in the computed

result. By relaxing the need for fully precise or

completely deterministic operations, approximate

computing techniques allow substantially improved

energy efficiency.

References

[1] J Han, M Orshansky. Approximate

computing: An emerging paradigm for

energy-efficient design, in Proc. 18th IEEE

Eur. Test Symp., 2013, 1–6.

[2] SL Lu. Speeding up processing with

approximation circuits, Computer, 37(3),

2004, 67–73.

[3] AK Verma, P Brisk, P Ienne. Variable

latency speculative addition: A new

paradigm for arithmetic circuit design, in

Proc. Design, Automat. Test Eur., 3, 2008,

1250–1255.

[4] N Zhu, WL Goh, KS Yeo. An enhanced

low-power high-speed adder for error-

tolerant application, in Proc. 12th Int. Symp.

Integr. Circuits, 12, 2009, 69–72.

[5] HR Mahdiani, A Ahmadi, SM Fakhraie, C

Lucas. Bio-inspired imprecise computational

blocks for efficient VLSI implementation of

soft-computing applications, IEEE Trans.

Circuits Syst. I, Reg. Papers, 57(4), 2010,

850–862.

[6] V Gupta, D Mohapatra, SP Park, A

Raghunathan, K Roy. Impact: IMPrecise

adders for low-power approximate

computing, in Proc. IEEE/ACM Int. Symp.

Low Power Electron. Design, 8, 2011, 409–

414.

[7] AB Kahng, S Kang. Accuracy-configurable

adder for approximate arithmetic designs, in

Proc. Design Automat. Conf., 6, 2012, 820–

825.

[8] K Du, P Varman, K Mohanram. High

performance reliable variable latency carry

select addition, in Proc. Design, Automat.

Test Eur. Conf. Exhib., 3, 2012, 1257–1262.

[9] J Liang, J Han, F Lombardi. New metrics for

the reliability of approximate and

probabilistic adders, IEEE Trans. Comput.,

62(9), 2012, 1760–1771.

[10] J Huang, J Lach, G Robins. A methodology

for energy-quality tradeoff using imprecise

hardware, in Proc. Design Automat. Conf.,

6, 2012, 504–509.

[11] J Miao, K He, A Gerstlauer, M Orshansky.

Modeling and synthesis of quality-energy

optimal approximate adders, in Proc.

IEEE/ACM Int. Conf. Comput.-Aided

Design, 11, 2012, 728–735.

[12] R Venkatesan, A Agarwal, K Roy, A

Raghunathan. Macaco: Modeling and

analysis of circuits for approximate

computing, Proc. IEEE/ACM Int. Conf.

Comput.-Aided Design, 11, 2011, 667–673.

Image Multiplier Based on Low Power Approximate Unsigned Multiplier 55

[13] H Jiang, C Liu, L Liu, F Lombardi, J Han. A

review, classification, and comparative

evaluation of approximate arithmetic

circuits, ACM J Emerg. Technol. Comput.

Syst., 13(4), 2017, Art. no. 60.

 [14] P Kulkarni, P Gupta, MD Ercegovac.

Trading accuracy for power in a multiplier

architecture, J Low Power Electron., 7(4),

2011, 490–501.

[15] K Bhardwaj, PS Mane, J Henkel. Power-

and area-efficient approximate wallace tree

multiplier for error-resilient systems, in

Proc. 15th Int. Symp. Qual. Electron.

Design, 3, 2014, 263–269.

[16] KY Kyaw, WL Goh, KS Yeo. ow-power

high-speed multiplier for error-tolerant

application, Proc. IEEE Int. Conf. Electron

Devices Solid-State Circuits, 12, 2010, 1–4.

[17] S Narayanamoorthy, HA Moghaddam, Z

Liu, T Park, NS Kim. Energy-efficient

approximate multiplication for digital signal

processing and classification applications,

IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., 23(6), 2015, 1180–1184.

[18] YH Chen, TY Chang. A high-accuracy

adaptive conditionalprobability estimator for

fixed-width booth multipliers, IEEE Trans.

Circuits Syst. I, Reg. Papers, 59(3), 2012,

594–603,

[19] B Shao, P Li. Array-based approximate

arithmetic computing: A general model and

applications to multiplier and squarer design,

IEEE Trans. Circuits Syst. I, Reg. Papers,

62(4), 2015, 1081–1090.

[20] H Jiang, J Han, F Qiao, F Lombardi.

Approximate radix-8 booth multipliers for

low-power and high-performance operation,

IEEE Trans. Comput., 65(8), 2016, 2638–

2644.

[21] K Nepal, Y Li, RI Bahar, S Reda. Abacus: A

technique for automated behavioral

synthesis of approximate computing circuits,

in Proc. Design, Automat. Test Eur. Conf.

Exhib., 3, 2014, 1–6.

[22] A Ranjan, A Raha, S Venkataramani, K

Roy, A Raghunathan. Aslan: Synthesis of

approximate sequential circuits, in Proc.

Design, Automat. Test Eur. Conf. Exhib., 3,

2014, 1–6.

[23] C Liu, J Han, F Lombardi. A low-power,

high-performance approximate multiplier

with configurable partial error recovery, in

Proc. Design, Automat. Test Eur. Conf.

Exhib., 3, 2014, 1–4.

[24] B Parhami. Computer Arithmetic. London,

U.K.: Oxford Univ. Press, 2000.

[25] MA Breuer. Intelligible test techniques to

support error-tolerance, in Proc. 13th Asian

Test Symp., 11, 2004, 386–393.

[26] N Weste, H David. CMOS VLSI Design: A

Circuits and Systems Perspective, 3rd ed.

London, U.K.: Pearson, 2005.

[27] VG Oklobdzija, D Villeger, SS Liu. A

method for speed optimized partial product

reduction and generation of fast parallel

multipliers using an algorithmic approach,

IEEE Trans. Comput., 45(3), 1996, 294–

306.

[28] KC Bickerstaff, EE Swartzlander, MJ

Schulte. Analysis of column compression

multipliers, in Proc. 15th IEEE Symp.

Comput. Arithmetic, 6, 2001, 33–39.

[29] KC Bickerstaff, MJ Schulte, EE

Swartzlander. Parallel reduced area

multipliers, J. VLSI Signal Process. Syst.

Signal, Image Video Technol., 9(3), 1995,

181–191.

[30] YK Cheng, CH Tsai, CC Teng, SM Kang.

Electrothermal Analysis of VLSI Systems.

New York, NY, USA: Springer, 2002.

[31] EJ King, EE Swartzlander. Data-dependent

truncation scheme for parallel multipliers,

Proc. 31st Conf. Rec. Asilomar Conf.

Signals, Syst. Comput., 2(11), 1997, 1178–

1182.

56 International Journal of Advance Research and Innovation, Vol 7(2), Apr-Jun 2019

[32] MSK Lau, KV Ling, YC Chu. Energy-aware

probabilistic multiplier: Design and analysis,

in Proc. Int. Conf. Compil., Archit.,

Synthesis Embedded Syst., 2009, 281–290.

[33] HR Myler, AR Weeks. The Pocket

Handbook of Image Processing Algorithms

in C Englewood Cliffs, NJ, USA: Prentice-

Hall, 1993.

