
International Journal of Advance Research and Innovation

Vol. 7(2), Apr-Jun 2019, pp. 67-71

Doi: 10.51976/ijari.721910

www.gla.ac.in/journals/ijari

© 2019 IJARI, GLA University

Article Info

Received: 13 May 2019 | Revised Submission: 20 May 2019 | Accepted: 28 May 2019 | Available Online: 15 Jun 2019

*Corresponding Author: Department of Electronics and Communication Engineering, Gnanamani College of Technology,

Tamil Nadu, India (E-mail: riyaarunriya@gmail.com)

**Department of Electronics and Communication Engineering, Gnanamani College of Technology, Tamil Nadu, India

Implementation of an Efficient Design of Multi ported Memory on FPGA

A. Priya* and P. Thenmozhi**

ABSTRACT

The utilization of block RAMs (BRAMs) is a critical performance factor for multi ported memory designs on

field programmable gate arrays (FPGAs). Not only does the excessive demand on BRAMs block the usage of

BRAMs from other parts of a design, but the complex routing between BRAMs and logic also limits the

operating frequency. This paper first introduces a brand new perspective and a more efficient way of using a

conventional two reads one write (2R1W) memory as a 2R1W/4Rmemory. By exploiting the 2R1W/4R as the

building block, this introduces a hierarchical design of 4R1W memory that25% fewer BRAMs than the previous

approach of duplicating the 2R1W module. Memories with more read/write ports can be extended from the

proposed 2R1W/4R memory and the hierarchical 4R1W memory. Compared with previous xor-based and live

value table-based approaches, the proposed designs can, respectively, reduce BRAM usage for 4R2W memory

designs with 8K-depth. For complex multiport designs, the proposed BRAM-efficient approaches can achieve

higher clock frequencies by alleviating the complex routing in an FPGA.

Keywords: Field Programmable Gate Array; Memory; Multi-Port; Chip.

1.0 Introduction

As FPGAs (Field-Programmable Gate Arrays)

continue to increase in transistor density, de-signers

are using them to build larger and more complex

systems-on-chip that require frequent sharing,

communication, queueing, and synchronization

among distributed functional units and compute

nodes—for example, applications that include

multiple FIFO buffers for moving data between clock

domains. These mechanisms are often best

implemented with multi-ported memories—memories

that allow multiple reads and writes to occur

simultaneously—since they can avoid serialization

and contention.

As another example, processors normally

require a multi-ported register file, where more

register file ports allows the processor to exploit a

greater amount of instruction-level parallelism (ILP)

where multiple instructions are being executed at the

same time. However, FPGA-based soft processors

have so far exploited little ILP, limited mainly to

simple instruction pipelines. This is partly due to the

fact that multi-ported memories (register files, in this

case) are particularly inefficient to implement on

FPGAs.

2.0 Literature Review

The register file is an expensive component in

the design of any processor, especially, when

considering the additional ports that are needed to

support multiple data paths within a wide-issue

VLIW processor[5]. In a recent work, these

additional resources were used to dynamically

reconfigure the register file to support a dynamically

reconfigurable VLIW core. The design can be

perceived as a single 8-issue, two 4-issue, or four 2-

issue VLIW cores. Consequently, the multi-ported

design can operate in different modes, namely as one,

two, or four register files, respectively, corresponding

to the active number of cores. The implementation of

the register file design on FPGAs using Block RAMs

still results in unused resources due to the coarseness

of the Block RAMs.

Existing implementation methods[6,7] of

multi-port register files (MPo-RF) in FPGAs are not

scalable enough to deal with the increased number of

68 International Journal of Advance Research and Innovation, Vol 7(2), Apr-Jun 2019

ports due to higher logic area and power. While the

usage of dedicated block RAMs (BRAMs) limits the

designer to use only single read and single write port,

slice based approach causes large resource occupation

and degrades design performance significantly.

Similarly, the conventional multi-pumping (MPu)

approaches are not efficient enough due to increased

combinational delay and area of huge multiplexers. In

this paper, we propose a new design which exploits

the banking and replication of BRAMs with efficient

shift register based multi-pumping (SR-MPu)

approach.

3.0 LVT-Based Multi-Ported Memories

The new approach to implement multi-ported

memories on FPGAs that can exploit the strengths of

all three conventional techniques for adding ports.

Their approach comprises banks of replicated block

RAMs, where a mechanism of indirection steers reads

to read from the bank holding the most-recent value

for a given location.

Multi pumping is orthogonal to our approach,

and can be applied to reduce the area of a memory in

cases where a slower operating frequency can be

tolerated, as we demonstrate later . They name our

indirection mechanism the Live Value Table (LVT),

since it tracks which bank contains the ―live‖ or

most-recently updated value for each memory

location.

A new design for true multi-ported memories

that capitalizes on FPGA block RAMs while

providing (i) substantially better area scaling than a

pure logic-based approach, and (ii) higher frequencies

than the multi pumping approach. The key to our

approach is a form of indirection through a structure

called the Live Value Table (LVT), which is itself a

small multi-ported memory implemented in

reconfigurable logic similar to Figure 1.1.

Essentially, the LVT allows a banked design to

behave like a true multi-ported design by directing

reads to appropriate banks based on which bank holds

the most recent or ―live‖ write value.

 The intuition for why an LVT-based design

is more efficient even though the LVT is

implemented in reconfigurable logic is because the

LVT is much narrower than the actual memory banks

since it only holds bank numbers rather than full data

values—thus the lines that are de-coded/multiplexed

are also much

Fig 1: 2R1W/4R FPGA Bank

narrower and hence more efficiently placed

and routed. An LVT-based design also leverages

block RAMs, which implement memory more

efficiently, and has an operating frequency closer to

that of the block RAMs themselves. Additionally, an

LVT-based design and multi pumping are

complementary, and we will show that with multi

pumping they can reduce the area of an LVT-based

design by halving its maximum operating frequency.

With these techniques they can support soft solutions

for multi-ported memories without the need for

expensive hardware block RAMs with more than two

ports.

1) This new way of using the 2R1W module is

denoted as 2R1W/4R. This hybrid module can

support either 2R or 1Wor 4R.

2) The write request W0 stores the data directly to

the target data bank, and reads all the data at the

same offset from the other data banks

4.0 Proposed System

FPGAs have been broadly used in fast

prototyping of complex digital systems. FPGAs

contain programmable logic arrays, usually referred

to as slices. Slices can be configured into different

logic functions. The flexible routing channels can

support data transferring between logic slices. In

addition to implementing logic operations, if needed,

the slices can also be used as storage elements, such

as flip-flops, register files, or other memory modules.

Due to the increasing complexity of digital systems,

there is a growing demand for in-system memory

modules. Synthesizing a large number of memory

Implementation of an Efficient Design of Multi ported Memory on FPGA 69

modules would consume a significant amount of

slices, and would therefore result in an inefficient

design. The excessive usage of slices could also pose

a limiting factor to the maximum size of a system that

can be prototyped on an FPGA. To more efficiently

support the in-system memory, modern FPGAs

deploy block RAMs (BRAMs) that are hard core

memory blocks integrated within an FPGA to support

efficient memory usage in a design. Compared with

the storage module synthesized by slices, BRAMs are

more area and power efficient while at the same time

achieving higher operating frequencies. Multi ported

memories, which allow multiple concurrent reads and

writes, are frequently used in various digital designs

on FPGAs to achieve high memory bandwidth. For

example, the register file of an FPGA-based

scalar MIPS-like soft processor requires one write

port and two read ports. Processors that issue

multiple instructions require even more access ports.

The shared cache system among multiple soft

processors on FPGA should support multiple

concurrent accesses. A routing table in a network

switching function would also need to enable

multiple accesses in order to support multiple

requests from different ingress ports .

Fig 2: Proposed 2W/2R Architecture

 The memory is composed of 2W/2R memory

(constructed via replication of block RAMs).

 Each write port writes to its own bank, and each

read port can read from any of all the banks via

its multiplexer.

 Driving the multiplexer of the read port to select

the output of the proper block RAM bank

5.0 Results

Simulation results are given by figure 3, 4 and

5.

Fig 3: 2 Write 1 Read Simulation Waveform

Fig 4: 2 Write 2 Read Simulation Waveform

5.1 Synthesis Results

Fig.5: Area Report for 2w 1r

70 International Journal of Advance Research and Innovation, Vol 7(2), Apr-Jun 2019

Fig 6: Area Report for 2w 2r

6.0 Conclusions

The proposed design of an efficient BRAM-

based multi ported memory is going to design on

FPGA. The existing design methods require

significant amounts of BRAMs to implement a

memory module that supports multiple read and write

ports. Occupying too many BRAMs for multi ported

memory could seriously restrict the usage of

BRAMs for other parts of a design. This paper

proposes techniques that can attain efficient multi

ported memory designs. This paper introduces a

novel 2R1W/4R memory. By exploiting the

2R1W/4R as the building block, this paper proposes a

hierarchical design of 4R1W memory that requires

33% fewer BRAMs than the previous designs based

on replication. Memories with more read/write ports

can be extended from the proposed 2R1W/4R

memory and the hierarchical 4R1W memory.

References

[1] F Anjam, M Nadeem, SWong. A vliw softcore

processor with dynamically adjustable issue-

slots. In Field-Programmable Technology

(FPT), 2010 International Conference on, 12,

2010, 393 –398.

[2] F Anjam, S Wong, F Nadeem. A multiported

register file with register renaming for

configurable softcore vliwprocessors. In Field-

Programmable Technology (FPT),

International Conference on, 12, 2010, 403 –

408.

[3] R Carli. Flexible MIPS Soft Processor

Architecture. Technical report, Massachusetts

Institute of Technology,Computer Science and

Artificial Intelligence Laboratory, 6, 2008.

[4] B Fort, D Capalija, Z Vranesic, S Brown. A

Multithreaded Soft Processor for SoPC Area

Reduction. In IEEE Symposium on Field-

Programmable Custom Computing Machines,

4,2006, 131–142.

[5] AK Jones, R Hoare, D Kusic, J Fazekas, J

Foster. An FPGA-based VLIWprocessor with

custom hardware execution. In International

Symposium on Field-Programmable Gate

Arrays, 2005.

[6] CE LaForest, JG Steffan. Efficient Multi-

ported Memories for FPGAs. In Proceedings

of the 18th annual ACM/SIGDA international

symposium on Field programmable gate

arrays, FPGA New York, NY, USA, 2010.

ACM, 10, 2010, 41–50,.

[7] N Manjikian. Design Issues for Prototype

Implementation of a Pipelined Superscalar

Processor in Programmable Logic. In

PACRIM 2003: IEEE Pacific Rim Conference

on Communications, Computers and Signal

Processing, 1(8), 2003, 155–158.

[8] R Moussali, N Ghanem, MAR Saghir.

Supporting multithreading in configurable soft

processor cores. In CASES ’07: Proceedings

of the 2007 international conference on

Compilers, Architecture, and Synthesis for

Embedded Systems, New York, NY, USA,

ACM, 2007, 155–159,.

[9] DA Patterson, G Gibson, RH Katz. A case for

redundant arrays of inexpensive disks (raid).

Proceedings of ACM SIGMOD international

conference on Management of data, 1988.

[10] M Saghir, R Naous. A Configurable Multi-

ported Register File Architecture for Soft

Processor Cores. ARC: Proceedings of

Implementation of an Efficient Design of Multi ported Memory on FPGA 71

International Workshop on Applied

Reconfigurable Computing, Springer-Verlag 3,

2007, 14–25.

[11] MAR Saghir, ME Majzoub, P Akl. Datapath

and ISA Customization for Soft VLIW

Processors. In ReConFig: IEEE International

Conference on Reconfigurable Computing and

FPGAs, 9, 2006, 1–10.

[12] H Wong, V Betz, J Rose. Comparing fpga vs.

custom cmos and the impact on processor

microarchitecture. Proceedings of the 19th

ACM/SIGDA international symposium on

Field programmable gate arrays, FPGA’ ACM,

New York, NY, USA, 11,2011, 5-14.

[13] P Yiannacouras, J G Steffan, J Rose.

Application-specific customization of soft

processor micro-architecture. FPGA :

Proceedings of ACM / SIGDA 14th

international symposium on Field

Programmable Gate Arrays, pages, New York,

NY, USA, 2006, 201–210.

