
International Journal of Advance Research and Innovation

Vol. 7(2), Apr-Jun 2019, pp. 77-81

Doi: 10.51976/ijari.721912

www.gla.ac.in/journals/ijari

© 2019 IJARI, GLA University

Article Info

Received: 01 May 2019 | Revised Submission: 20 May 2019 | Accepted: 28 May 2019 | Available Online: 15 Jun 2019

*Corresponding Author: Department of Electronics and Communication Engineering, Gnanamani College of Technology.

Tamil Nadu, India (E-mail: thilagaece2013@gmail.com)

**Department of Electronics and Communication Engineering, Gnanamani College of Technology. Tamil Nadu, India

Improvement of Test Data Compression Using Huffman and Golomb Coding Techniques

Thilagavathi* and Karthick**

ABSTRACT

Test vector compression is an emerging trend in the field of VLSI testing. According to these trends, increasing

test data volume is one of the biggest challenges in the testing industry. The overall throughput of automatic test

equipment (ATE) is sensitive to the download time of test data. An effective approach to the reduction of the

download time is to compress test data before the download. But this tester has limited speed, memory and I/O

channels. The test data bandwidth between the tester and the chip is small which is the bottleneck in

determining how fast the testing process. To overcome these limitations of the Automatic Test Equipment (ATE),

a new hybrid test vector compression technique is proposed. the large volume of test data input is compressed in

a hybrid fashion before being downloaded into the processor and the test compression ratio is increased and is

experimentally verified with the benchmark circuits.

Keywords: Automatic Test Equipment; Data Compression; Golomb Coding.

1.0 Introduction

Compression is used just about everywhere.

All the images you get on the web are compressed,

typically in the JPEG or GIF formats, most modems

use compression, HDTV will be compressed using

MPEG-2, and several file systems automatically

compress files when stored, and the rest of us do it by

hand. The neat thing about compression, as with the

other topics we will cover in this course, is that the

algorithms used in the real world make heavy use of a

wide set of algorithmic tools, including sorting, hash

tables, tries, and FFTs. Furthermore, algorithms with

strong theoretical foundations play a critical role in

real-world applications.Lossless compression

algorithms usually exploit statistical redundancy in

such a way as to represent the sender's data more

concisely, but nevertheless perfectly. Lossless

compression is possible because most real-world data

has statistical redundancy. For example, in English

text, the letter 'e' is much more common than the

letter 'z', and the probability that the letter 'q' will be

followed by the letter 'z' is very small.Another kind of

compression, called lossy data compression, is

possible if some loss of fidelity is acceptable. For

example, a person viewing a picture or television

video scene might not notice if some of its finest

details are removed or not represented perfectly (i.e.

may not even notice compression artifacts). Similarly,

two clips of audio may be perceived as the same to a

listener even though one is missing details found in

the other. Lossy data compression algorithms

introduce relatively minor differences and represent

the picture, video, or audio using fewer bits.

2.0 Literature Review

As mentioned in the introduction, coding is the

job of taking probabilities for messages and

generating bit strings based on these probabilities. In

practice we typically use probabilities for parts of a

larger message rather than for the complete message,

e.g., each character or word in a text. To be consistent

with the terminology in the previous section, we will

consider each of these components a message on its

own, and we will use the term message sequence for

the larger message made up of these components. In

general each little message can be of a different type

and come from its own probability distribution. For

example, when sending an image we might send a

message specifying a color followed by messages

specifying a frequency component of that color. Even

the messages specifying the color might come from

different probability distributions since the

probability of particular colors might depend on the

context. We distinguish between algorithms that

78 International Journal of Advance Research and Innovation, Vol 7(2), Apr-Jun 2019

assign a unique code (bit-string) for each message,

and ones that “blend” the codes together from more

than one message in a row. In the first class we will

consider Huffman codes, which are a type of prefix

code.

In the later category we consider arithmetic

codes. The arithmetic codes can achieve better

compression, but can require the encoder to delay

sending messages since the messages need to be

combined before they can be sent.

3.0 Dictionary-Based Code Compression

Dictionary based compression techniques are

extremely popular in embedded systems domain since

they provide a dual advantage of good compression

ratio as well as a fast decompression mechanism.

The basic idea is to take advantage of

commonly occurring instruction sequences by using a

dictionary.

In general a dictionary contains 256 or more

entries. As a result, a code pattern will have fewer

than 32 bit changes.

If a code pattern is different from a dictionary

entry in 8 bit positions, it requires only one 8-bit

mask and its position i.e., it requires 13 (8+5) extra

bits.

This can be improved further if we consider bit

changes only in byte boundaries.

Fig 1: Generic Encoding Format

This leads to a tradeoff - requires fewer bits

(8+2) but may miss few mismatches that spread

across two bytes. Our study uses the latter approach

that uses fewer bits to store a mask position.

If we choose two distinct bit-mask patterns, 2-

bit fixed (2f) and 4-bit sliding (4s), we can generate

six combinations: (2f), (4f), (2f, 2f), (2f, 4f), (4f, 2f),

(4f, 4f). Similarly, three distinct mask patterns can

create up to 39 combinations.

Now we can try to answer the two questions

posed at the beginning of this section.

Table 1: Various Bit-Mask Patterns

It is easy to answer the first question: up to two

mask patterns are profitable. The reason is obvious

based on the cost consideration. The smallest cost to

store the three bitmask information (position and

pattern) is 15 bits (if three 1-bit sliding patterns are

used). In addition, we need 1-5 bits to indicate the

mask combination and 8-14 bits for a codeword

(dictionary index). Therefore, we require

approximately 29 bits (on average) to encode a 32-bit

vector. In other words, we save only 3 bits to match 3

bit differences (on a 32-bit vector). Clearly, it is not

very profitable to use three or more bitmask patterns.

Applying a larger bitmask can generate more

matching patterns. However, it may not improve the

compression ratio. Similarly, using a sliding mask

where a fixed one is sufficient is wasteful since a

fixed mask require fewer number of bits (compared to

its sliding counterpart) to store the position

information. For example, if a 4-bit sliding mask

(cost of 9 bits) is used where a 4-bit fixed (cost of 7

bits) is sufficient, two additional bits are wasted.

4.0 Proposed System

Data compression is known for reducing

storage and communication costs. It involves

transforming data of a given format, called source

message, to data of a smaller sized format, called

code word. Data encryption is known for protecting

information from eavesdropping. It transforms data of

a given format, called plaintext, to another format,

called cipher text, using an encryption key.

Our decompression hardware for variable-

length coding is capable of operating at the speed

closest to the best known field- programmable gate

array-based decoder for fixed-length coding. On

Compressed Bit streams, more configuration

information can be stored using the same memory.

Improvement of Test Data Compression Using Huffman and Golomb Coding Techniques 79

The access delay is also reduced, because less bits

need to be transferred through the memory interface.

To measure the efficiency of bit stream, is meant by

Compression Ratio (CR). It is defined as the ratio

between the Compressed Bit stream Size (CS) and the

Original Bit stream Size (OS).

4.1 Golomb coding

Golomb Coding is a lossless data compression

method using a family of data compression codes

invented by Solomon W. Golomb in the 1960s.

Golomb coding for data compression is a well-known

technique due to its lower complexity. Thus, it has

become one of the favorite choices for lossless data

compression technique in many applications

especially in mobile multimedia communication. In

this paper, the development of Golomb Coding

compression and decompression algorithms in the

Field Programmable Gate Array (FPGA) is presented.

The coding scheme development in FPGA utilises the

Verilog HDL. Alphabets following a geometric

distribution will have a Golomb code as an optimal

prefix code, making Golomb coding highly suitable

for situations in which the occurrence of small values

in the input stream is significantly more likely than

large values.

Rice coding (invented by Robert F. Rice)

denotes using a subset of the family of Golomb codes

t/o produce a simpler (but possibly suboptimal) prefix

code; Rice used this in an adaptive coding scheme,

although "Rice coding" can refer to either that

scheme or merely using that subset of Golomb codes.

Whereas a Golomb code has a tunable parameter that

can be any positive value, Rice codes are those in

which the tunable parameter is a power of two. This

makes Rice codes convenient for use on a computer,

since multiplication and division by 2 can be

implemented more efficiently in binary arithmetic.

Rice coding is used as the entropy encoding stage in a

number of lossless image compression and audio data

compression methods.

Note below that this is the Rice-Golomb

encoding, where the remainder code uses simple

truncated binary encoding, also named "Rice coding"

(other varying-length binary encodings, like

arithmetic or Huffman encodings, are possible for the

remainder codes, if the statistic distribution of

remainder codes is not flat, and notably when not all

possible remainders after the division are used). In

this algorithm, if the M parameter is a power of 2, it

becomes equivalent to the simpler Rice encoding.

4.2 Huffman coding

Huffman coding is a variable-length encoding

scheme. The number of bits required to store a coded

character varies according to the relative frequency or

weight of the character. A significant space savings is

achieved for frequently used characters (requiring

only one, two or three bits). Little space saving is

achieved for infrequent characters. A Huffman

Coding Tree is built from the observed frequencies of

characters in a document. The document is scanned

and the occurrence of each character is recorded.

Next, a Binary Tree is built in which the external

nodes store the character and the corresponding

character frequency observed in the document.

The Huffman encoding algorithm starts by

constructing a list of all the alphabet symbols in

descending order of their probabilities. It then

constructs, from the bottom up, binary tree with a

symbol at every leaf. This is done in steps, where at

each step two symbols with the smallest probabilities

are selected, added to the top of the partial tree,

deleted from the list, and replaced with an auxiliary

symbol representing the two original symbols. When

the list is reduced to just one auxiliary symbol

(representing the entire alphabet), the tree is

complete. The tree is then traversed to determine the

codewords of the symbols.

Fig 2: Golomb Encoding Flowchart

A symbol is any 8-bit combination as well as

an End Of File (EOF) marker. This means that there

are 257 possible symbols in any code. As an entropy

encoding scheme, Huffman encoding assigns short

code words to frequently occurring words and longer

code words to infrequently occurring words. Huffman

encoding is based on a Huffman tree, which in turn is

created upon a probability distribution of words.

80 International Journal of Advance Research and Innovation, Vol 7(2), Apr-Jun 2019

Creating an individual Huffman tree for each

bitstream file is called dynamic Huffman encoding.

Such a Huffman tree is part of the compressed data

and has to be reconstructed before decompression.

Such decompressors turn out to be costly in terms of

hardware usage.

Applying the same Huffman tree for all

bitstreams is called static Huffman encoding. The

static Huffman tree is based on the probability

distribution of all words in our benchmark corpus and

will never change. The compression rate for the

overall corpus is hence still optimal, whereas we

could achieve better compression rates for single

bitstream files using dynamic Huffman encoding.

5.0 Results

Simulation Results are shown by figure 3 and

figure 4. Synthesis results shown in figure 5 and

figure 6.

Fig 3: Golomb Code Output Simulation

Waveform

Fig 4: Golomb Code to Huffman Code Output

Fig 5: Golomb Simulation Waveform

Fig 6: Huiffman Simulation Waveform

6.0 Conclusions

The test compression technique which

combines both Huffman and Golomb coding is

proposed. Thus, it reduces both the amount of test

storage and testing time, thereby reducing the tester

memory and channel capacity requirements. As the

proposed method is mainly software based, the

hardware requirements and cost of ATE are

minimized. The technique is completely lossless and

time and space efficient because of its higher

compression ratio and rapid decompression process.

Currently, work is underway on implementing the

decompression procedure in the embedded processor

along with automatic application of test vectors for

analyzing test fault coverage. The test vector

Improvement of Test Data Compression Using Huffman and Golomb Coding Techniques 81

compression is implemented through ModelSim 6.4a

version and the functionality of each test compression

technique was verified. Among these three,

compression produces more reduction in test vector

than the normal individual coding schemes.

References

[1] R Merkle. Secure communication over an

insecure channel, Communications of the

ACM.

[2] D Kahn. The Codebreakers, The Story of

Secret Writing. New York: Macmillan, 1967.

[3] CE Shannon. Communication theory of

secrecy systems, Bell Syst. Tech. J., 28(8),

1949, 656–715.

[4] ME Hellman. An extension of the Shannon

theory approach to cryptography. IEEE Trans..

[5] HF Gaines. Cryptanalysis, 1939, Dover. ISBN

0-486-20097-3 .

[6] Asinkov. Elementary Cryptanalysis: A

Mathematical Approach, Mathematical

Association of America, ISBN 0-88385-622-

0,1966.

[7] S Kwong, YF Ho. A Statistical Lempel- Ziv

Compression Algorithm for Personal Digital

Assistant (PDA), IEEE Transactions on

Consumer Electronics, 47(1), 2001.

[8] L Li, K Chakrabarty. Test Data Compression

Using Dictionaries with Fixed-Length Indices,

Proceedings of the 21st IEEE VLSI Test

Symposium (VTS.03).

[9] PG Howard, JS Vitter. Practical

Implementations of Arithmetic Coding,

Providence, R.I. 02912-1910.

[10] S Yang. P Qiu. Efficient Integer Coding for

Arbitrary Probability Distributions, IEEE

Transactions On Information Theory, 52(8),

2006.

[11] P Elias. Universal codeword sets and

representations of the integers. IEEE

Transactions on Information Theory, 21(2),

1975, 194-203.

[12] J Walder, M Kratky, J Platos. Fast Fibonacci

Encoding Algorithm, Dateso, 72-83, ISBN

978-80-7378-116-3, 2010.

[13] ST Klein, MKB Nissan. On the Usefulness of

Fibonacci Compression Codes, Computer

Journal, 2005.

[14] X Kavousianos, E Kalligeros, D Nikolos.

Multilevel-Huffman test-data compression for

IP cores with multiple scan chains, IEEE

Transactions on Very Large Scale Integration

(VLSI) Systems, 16(7), 2008.

[15] Jas, NA Touba. Test Vector Compression via

Cyclical Scan Chains and Its Application to

Testing Core-Based Designs, Proc. Int’l Test

Conf. (ITC 98), IEEE CS Press, 1998, 458-

464.

[16] Chandra, K Chakrabarty. Test Data

Compression for System-on-Chip Using

Golomb Codes, VTS '00: Proceedings of the

18th IEEE VLSI Test Symposium, 2000.

