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ABSTRACT 

 

Test vector compression is an emerging trend in the field of VLSI testing. According to these trends, increasing 

test data volume is one of the biggest challenges in the testing industry. The overall throughput of automatic test 

equipment (ATE) is sensitive to the download time of test data. An effective approach to the reduction of the 

download time is to compress test data before the download. But this tester has limited speed, memory and I/O 

channels. The test data bandwidth between the tester and the chip is small which is the bottleneck in 

determining how fast the testing process. To overcome these limitations of the Automatic Test Equipment (ATE), 

a new hybrid test vector compression technique is proposed. the large volume of test data input is compressed in 

a hybrid fashion before being downloaded into the processor and the test compression ratio is increased and is 

experimentally verified with the benchmark circuits. 
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1.0 Introduction 

 

Compression is used just about everywhere. 

All the images you get on the web are compressed, 

typically in the JPEG or GIF formats, most modems 

use compression, HDTV will be compressed using 

MPEG-2, and several file systems automatically 

compress files when stored, and the rest of us do it by 

hand. The neat thing about compression, as with the 

other topics we will cover in this course, is that the 

algorithms used in the real world make heavy use of a 

wide set of algorithmic tools, including sorting, hash 

tables, tries, and FFTs. Furthermore, algorithms with 

strong theoretical foundations play a critical role in 

real-world applications.Lossless compression 

algorithms usually exploit statistical redundancy in 

such a way as to represent the sender's data more 

concisely, but nevertheless perfectly. Lossless 

compression is possible because most real-world data 

has statistical redundancy. For example, in English 

text, the letter 'e' is much more common than the 

letter 'z', and the probability that the letter 'q' will be 

followed by the letter 'z' is very small.Another kind of 

compression, called lossy data compression, is 

possible if some loss of fidelity is acceptable. For 

example, a person viewing a picture or television 

video scene might not notice if some of its finest 

details are removed or not represented perfectly (i.e. 

may not even notice compression artifacts). Similarly, 

two clips of audio may be perceived as the same to a 

listener even though one is missing details found in 

the other. Lossy data compression algorithms 

introduce relatively minor differences and represent 

the picture, video, or audio using fewer bits. 

 

2.0 Literature Review 

 

As mentioned in the introduction, coding is the 

job of taking probabilities for messages and 

generating bit strings based on these probabilities. In 

practice we typically use probabilities for parts of a 

larger message rather than for the complete message, 

e.g., each character or word in a text. To be consistent 

with the terminology in the previous section, we will 

consider each of these components a message on its 

own, and we will use the term message sequence for 

the larger message made up of these components. In 

general each little message can be of a different type 

and come from its own probability distribution. For 

example, when sending an image we might send a 

message specifying a color followed by messages 

specifying a frequency component of that color. Even 

the messages specifying the color might come from 

different probability distributions since the 

probability of particular colors might depend on the 

context. We distinguish between algorithms that 
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assign a unique code (bit-string) for each message, 

and ones that “blend” the codes together from more 

than one message in a row. In the first class we will 

consider Huffman codes, which are a type of prefix 

code.  

In the later category we consider arithmetic 

codes. The arithmetic codes can achieve better 

compression, but can require the encoder to delay 

sending messages since the messages need to be 

combined before they can be sent. 

 

3.0 Dictionary-Based Code Compression 

 

Dictionary based compression techniques are 

extremely popular in embedded systems domain since 

they provide a dual advantage of good compression 

ratio as well as a fast decompression mechanism. 

The basic idea is to take advantage of 

commonly occurring instruction sequences by using a 

dictionary. 

In general a dictionary contains 256 or more 

entries. As a result, a code pattern will have fewer 

than 32 bit changes. 

If a code pattern is different from a dictionary 

entry in 8 bit positions, it requires only one 8-bit 

mask and its position i.e., it requires 13 (8+5) extra 

bits. 

This can be improved further if we consider bit 

changes only in byte boundaries. 

 

Fig 1: Generic Encoding Format 

 

 
 

This leads to a tradeoff - requires fewer bits 

(8+2) but may miss few mismatches that spread 

across two bytes. Our study uses the latter approach 

that uses fewer bits to store a mask position. 

If we choose two distinct bit-mask patterns, 2-

bit fixed (2f) and 4-bit sliding (4s), we can generate 

six combinations: (2f), (4f), (2f, 2f), (2f, 4f), (4f, 2f), 

(4f, 4f). Similarly, three distinct mask patterns can 

create up to 39 combinations. 

Now we can try to answer the two questions 

posed at the beginning of this section. 

Table 1: Various Bit-Mask Patterns 

 

 
 

It is easy to answer the first question: up to two 

mask patterns are profitable. The reason is obvious 

based on the cost consideration. The smallest cost to 

store the three bitmask information (position and 

pattern) is 15 bits (if three 1-bit sliding patterns are 

used). In addition, we need 1-5 bits to indicate the 

mask combination and 8-14 bits for a codeword 

(dictionary index). Therefore, we require 

approximately 29 bits (on average) to encode a 32-bit 

vector. In other words, we save only 3 bits to match 3 

bit differences (on a 32-bit vector). Clearly, it is not 

very profitable to use three or more bitmask patterns. 

Applying a larger bitmask can generate more 

matching patterns. However, it may not improve the 

compression ratio. Similarly, using a sliding mask 

where a fixed one is sufficient is wasteful since a 

fixed mask require fewer number of bits (compared to 

its sliding counterpart) to store the position 

information. For example, if a 4-bit sliding mask 

(cost of 9 bits) is used where a 4-bit fixed (cost of 7 

bits) is sufficient, two additional bits are wasted. 

 

4.0 Proposed System 

 

Data compression is known for reducing 

storage and communication costs. It involves 

transforming data of a given format, called source 

message, to data of a smaller sized format, called 

code word. Data encryption is known for protecting 

information from eavesdropping. It transforms data of 

a given format, called plaintext, to another format, 

called cipher text, using an encryption key.  

Our decompression hardware for variable-

length coding is capable of operating at the speed 

closest to the best known field- programmable gate 

array-based decoder for fixed-length coding. On 

Compressed Bit streams, more configuration 

information can be stored using the same memory. 
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The access delay is also reduced, because less bits 

need to be transferred through the memory interface. 

To measure the efficiency of bit stream, is meant by 

Compression Ratio (CR). It is defined as the ratio 

between the Compressed Bit stream Size (CS) and the 

Original Bit stream Size (OS). 

 

4.1 Golomb coding 

Golomb Coding is a lossless data compression 

method using a family of data compression codes 

invented by Solomon W. Golomb in the 1960s. 

Golomb coding for data compression is a well-known 

technique due to its lower complexity. Thus, it has 

become one of the favorite choices for lossless data 

compression technique in many applications 

especially in mobile multimedia communication. In 

this paper, the development of Golomb Coding 

compression and decompression algorithms in the 

Field Programmable Gate Array (FPGA) is presented. 

The coding scheme development in FPGA utilises the 

Verilog HDL. Alphabets following a geometric 

distribution will have a Golomb code as an optimal 

prefix code, making Golomb coding highly suitable 

for situations in which the occurrence of small values 

in the input stream is significantly more likely than 

large values. 

Rice coding (invented by Robert F. Rice) 

denotes using a subset of the family of Golomb codes 

t/o produce a simpler (but possibly suboptimal) prefix 

code; Rice used this in an adaptive coding scheme, 

although "Rice coding" can refer to either that 

scheme or merely using that subset of Golomb codes. 

Whereas a Golomb code has a tunable parameter that 

can be any positive value, Rice codes are those in 

which the tunable parameter is a power of two. This 

makes Rice codes convenient for use on a computer, 

since multiplication and division by 2 can be 

implemented more efficiently in binary arithmetic. 

Rice coding is used as the entropy encoding stage in a 

number of lossless image compression and audio data 

compression methods. 

Note below that this is the Rice-Golomb 

encoding, where the remainder code uses simple 

truncated binary encoding, also named "Rice coding" 

(other varying-length binary encodings, like 

arithmetic or Huffman encodings, are possible for the 

remainder codes, if the statistic distribution of 

remainder codes is not flat, and notably when not all 

possible remainders after the division are used). In 

this algorithm, if the M parameter is a power of 2, it 

becomes equivalent to the simpler Rice encoding. 

4.2 Huffman coding  

Huffman coding is a variable-length encoding 

scheme. The number of bits required to store a coded 

character varies according to the relative frequency or 

weight of the character. A significant space savings is 

achieved for frequently used characters (requiring 

only one, two or three bits). Little space saving is 

achieved for infrequent characters. A Huffman 

Coding Tree is built from the observed frequencies of 

characters in a document.  The document is scanned 

and the occurrence of each character is recorded. 

Next, a Binary Tree is built in which the external 

nodes store the character and the corresponding 

character frequency observed in the document. 

The Huffman encoding algorithm starts by 

constructing a list of all the alphabet symbols in 

descending order of their probabilities. It then 

constructs, from the bottom up,   binary tree with a 

symbol at every leaf. This is done in steps, where at 

each step two symbols with the smallest probabilities 

are selected, added to the top of the partial tree, 

deleted from the list, and replaced with an auxiliary 

symbol representing the two original symbols. When 

the list is reduced to just one auxiliary symbol 

(representing the entire alphabet), the tree is 

complete. The tree is then traversed to determine the 

codewords of the symbols. 

 

Fig 2: Golomb Encoding Flowchart 

 

 

 

A symbol is any 8-bit combination as well as 

an End Of File (EOF) marker. This means that there 

are 257 possible symbols in any code. As an entropy 

encoding scheme, Huffman encoding assigns short 

code words to frequently occurring words and longer 

code words to infrequently occurring words. Huffman 

encoding is based on a Huffman tree, which in turn is 

created upon a probability distribution of words. 
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Creating an individual Huffman tree for each 

bitstream file is called dynamic Huffman encoding. 

Such a Huffman tree is part of the compressed data 

and has to be reconstructed before decompression. 

Such decompressors turn out to be costly in terms of 

hardware usage. 

Applying the same Huffman tree for all 

bitstreams is called static Huffman encoding. The 

static Huffman tree is based on the probability 

distribution of all words in our benchmark corpus and 

will never change. The compression rate for the 

overall corpus is hence still optimal, whereas we 

could achieve better compression rates for single 

bitstream files using dynamic Huffman encoding. 

 

5.0 Results 

 

Simulation Results are shown by figure 3 and 

figure 4. Synthesis results shown in figure 5 and 

figure 6. 

 

Fig 3: Golomb Code Output Simulation 

Waveform 

 

 
 

Fig 4: Golomb Code to Huffman Code Output 

 

 

Fig 5: Golomb Simulation Waveform 

 

 
 

Fig 6: Huiffman Simulation Waveform 

 

 
 

6.0 Conclusions 

 

The test compression technique which 

combines both Huffman and Golomb coding is 

proposed. Thus, it reduces both the amount of test 

storage and testing time, thereby reducing the tester 

memory and channel capacity requirements. As the 

proposed method is mainly software based, the 

hardware requirements and cost of ATE are 

minimized. The technique is completely lossless and 

time and space efficient because of its higher 

compression ratio and rapid decompression process. 

Currently, work is underway on implementing the 

decompression procedure in the embedded processor 

along with automatic application of test vectors for 

analyzing test fault coverage. The test vector 
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compression is implemented through ModelSim 6.4a 

version and the functionality of each test compression 

technique was verified. Among these three, 

compression produces more reduction in test vector 

than the normal individual coding schemes. 
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