
International Journal of Advance Research and Innovation

Vol. 7(3), Jul-Sept 2019, pp. 68-71

Doi: 10.51976/ijari.731909

www.gla.ac.in/journals/ijari

© 2019 IJARI, GLA University

Article Info

Received: 13 May 2019 | Revised Submission: 20 May 2019 | Accepted: 28 May 2019 | Available Online: 15 Jun 2019

*Corresponding Author: Department of Computer Engineering, Dayananda Sagar College of Engineering, Bangalore,

Karnataka, India (E-mail: deekshitha.arasa@gmail.com)

*Department of Computer Engineering, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India

(E-mail: meharbhakshi2013@gmail.com)

Development of Android Application for Device to Device Communication in IoT Using Rabbit

MQ Broker

Deekshitha Arasa* and SP Meharunnisa**

ABSTRACT

This paper provides information about using RabbitMQ broker as a real time communication medium for IoT

applications. The ability to gather relevant real time information is the main key of the intelligent IoT

communication. This can be done by using MQTT protocol which is emerging as an effective “machine to

machine” communication protocol for IoT world of connected devices and for mobile applications where

bandwidth and battery power are at the premium.

Keywords: Internet of Things (IoT); Rabbit MQ; MQTT; Intelligent Communicating; Protocol.

1.0 Introduction

Education IoT applications must be reactive

and asynchronous. They should be capable of

handling many devices and all messages ingested

from them. Asynchronous messaging enables

flexibility i.e. an application can send a message out

and then it can keep working on the other things

where as in synchronized messaging it has to wait

for a response in real time. We can write the

message to a queue and let the same business logic

happen later, no need to wait for the web service to

take action.

2.0 Message Queuing for IoT with Rabbit MQ

2.1 Introduction to rabbit MQ

RabbitMQ is open source message broker

software. It accepts messages from producers

(publishers) and provides them to consumers

(Subscribers). RabbitMQ acts as a gateway for

MQTT, AMQP, STOMP and HTTP protocols.

2.2 Structure of rabbit MQ communication

Fig 1 shows how a message is being passed

from producer to consumer through RabbitMQ

broker. The client applications called producers

create messages and deliver them to the broker (the

message queue)[1]. Consumers connect to the queue

and subscribe to the messages to be processed. A

software in a device can be a producer, or consumer,

or both a consumer and a producer of messages.

Messages placed onto the queue are stored until the

consumer gets them.

Fig 1: Message Flow in Rabbit MQ

Instead of sending messages directly to the

queue, the producer sends messages to an exchange.

With the help of bindings and routing keys, an

exchange accepts messages from the producer

application and routes them to message queues. A

binding is a link between a queue and an exchange

[1].

Steps describe the message flow in RabbitMQ:

1. The producer publishes a message to an

exchange. There are different types of

exchanges: Direct, Topic and Fanout. Type of

exchange should be specified clearly.

Development of Android Application for Device to Device Communication in IoT using Rabbit

MQ Broker
69

2. The exchange receives the message and is now

responsible for the routing of the message.

3. Bindings need to be created from the exchange to

queues.

4. The messages stay in the queue until they are

handled by a consumer.

5. The consumer handles the message.

2.3. Rabbit MQ and server concepts

The following are the main concepts we need

to know before we dig deep into RabbitMQ

1. Producer: Application that sends messages.

2. Consumer: Application that receives messages.

3. Queue: Buffer that stores messages.

4. Message: Information that is passed from

producer to consumer through RabbitMQ.

5. Connection: A connection is a TCP connection

between your application and the RabbitMQ

broker.

6. Channel: A channel is a virtual connection inside

a connection. Through the channel, messages are

published or consumed from the queue.

7. Exchange: Receives messages from producers

and pushes them to queues depending on rules

defined by the exchange type. A queue needs to

be bound to at least one exchange to receive

messages.

Following are the types of Exchanges:

a) Direct: It delivers messages to queues based

on a message routing key. Here, the binding

key of the message should exactly match to

the routing key of the message.

b) Fanout: It routes messages to all of the

queues that are bound to it.

c) Topic: The topic exchange does a wildcard

match between the routing key and the

routing pattern specified in the binding.

d) Headers: Headers exchanges use the

message header attributes for routing.

8 Binding: A binding is a link between queue and

exchange.

9 Routing Key: The routing key is a key that the

exchange looks at to decide how to route the

message to queues. The routing key acts like an

address for the message.

10 Users: It is possible to connect to Rabbit MQ

with a given username and password.

11 vhost, Virtual host: A Virtual host provides a

way to segregate applications using the same

Rabbit MQ instance. Different users can have

different access privileges to different vhost and

queues and exchanges can be created, so they

only exist in one vhost.

3.0 Working with Rabbit MQ Broker

First you need to install Rabbit MQ server. By

default it is available in the API local host. In your

web browser you need to type http:localhost:15672.

You will be redirected to rabbit MQ server login

page. By default, the username and password are set

to guest. We can change it if we desire to do so.

Fig 2: Home page of RabbitMQ server

RabbitMQ provides a web UI for managing

and monitoring your RabbitMQ server. Fig 2 shows a

homepage of a RabbitMQ server. Queues,

Exchanges, bindings, users can be created and

managed using the Web UI.

3.1 Publish and subscribing messages using

RabbitMQ

To communicate with RabbitMQ we need a

library that understands the same protocol as

RabbitMQ. We need to download the client-library

for the programming language that you is required for

our applications. A client-library is an applications

programming interface (API) for writing client

applications. A client library has several methods that

can be used to communicate with RabbitMQ. The

methods should be used when we want to connect to

the RabbitMQ broker (using the given parameters,

hostname, port number, etc or when we declare a

queue or an exchange.

70 International Journal of Advance Research and Innovation, Vol 7(3), Jul-Sept 2019

Steps to follow when setting up a connection

and publishing a message/consuming a message: [2]

1. First of all, we need to set up/create a connection

object. This is the place whare the username,

password, connection URL, port etc, will be

specified. Between the application and

RabbitMQ, a TCP connection will be built when

the start method is called.

2. A channel needs to be opened and created in the

TCP connection. To open a channel, a

connection interface can be used and it can be

used to send and receive messages.

3. Declare/create a queue. Declaring a queue will

create a queue if it does not already exist. All

queues need to be declared before using them.

4. In subscriber/consumer: Set up exchanges and

bind a queue to an exchange. All exchanges need

to be declared before using them. An exchange is

responsible for accepting messages from a

producer application and routing them to

message queues. For messages to be routed to

queues, it is necessary for the queues to bind to

an exchange.

5. In publisher: Publish a message to an exchange.

6. In subscriber/consumer: Consume a message

from a queue.

7. Close the channel and the connection.

3.1 Basic Set up for a java client

3.2.1 For a java client, the Maven dependency

would be

 <dependency>

<groupId>com.rabbitmq</groupId>

<artifactId>amqp-client</artifactId>

<version>4.0.0</version>

</dependency>

3.2.2 After running the RabbitMQ broker, we

need to establish connection with the java client

ConnectionFactory factory = new Connection

Factory();

factory.setHost("localhost");

Connection connection =

factory.newConnection();

Channel channel =

connection.createChannel();

factory.setPort(15678);

factory.setUsername("user1");

factory.setPassword("MyPassword");

We can use setPort to set the port if the default

port is not used by the RabbitMQ Server; the default

port for RabbitMQ is 15672:

3.3 To set producer

From the producer side, declare the queue as

follows:

channel.queueDeclare

(“<Queuename>”, false, false, false, null);

String message =

“<Queuename>”;

channel.basicPublish

("", "<Queuename", null, message.getBytes());

Then close the channel and connection.

channel.close();

connection.close();

3.4 To set up the consumer

Declare the same queue from the consumer

side as follows:

channel.queueDeclare

("<Queuename", false, false, false, null);

Then declare the consumer that will process

messages fom the queue asynchronously.

Consumer consumer = new

DefaultConsumer(channel)

{

@Override

public void handleDelivery(

String consumerTag,

Envelope envelope,

AMQP.BasicProperties properties,

byte[] body) throws IOException {

String message =

new String(body, "UTF-8");

// process the message

}

};

channel.basicConsume("products_queue",

true, consumer);

4.0 Conclusions

RabbitMQ is a message broker that takes

messages and sends them to other places in a pretty

smart way.

It is completely language-neutral and while

using it you can write and read to them in any

language just like you would while using TCP or

HTTP.

RabbitMQ runs on all major operating systems

and supports a large number of developer platforms

such as java, .NET, Python, PHP, Erlang and many

more.

Development of Android Application for Device to Device Communication in IoT using Rabbit

MQ Broker
71

References

1. S Shailesh, K Joshi, K Purandare.

Performance Analysis of RabbitMQ as a

message bus, Department of Computer

Engineering, VJTI, Mumbai, Maharashtra,

India

2. O Bello, S Zeadally. Intelligent Device-to-

Device Communication in the Internet of

Things, IEEE, and Sherali Zeadally, Senior,

IEEE, 10(3), 2016, 1172-1182

