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On Generalized Seventh Order Pell and Pell-like Sequences

Nasir Ahmad* and Leena Prasher**

ABSTRACT

The generalizations of Fibonacci sequence have wide range of properties and applications in every field of
science and hybrid science. The Fibonacci sequence has been generalized in nemours ways either with the same
initial conditions or by altering the recurrence relation and vis a vis In this regard, we attempted to
consummate all relevant and available literature in order to provide readers with a solid foundation for further
scientific research for higher order Pell-like sequences. In this paper, we present some results on the
generalized Pell sequences and Pell-like sequences of order seven. The generating function, Binet Formula and
linear sum for Pell, Pell-Lucas and modified Pell sequences of order seven will be investigated and results on

them. Also some well-known identities for order seven will be presented for the same.
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1.0 Introduction

In this paper, we introduce the generalized Pell
sequences of order seven and we investigate Pell-like
sequences; Pell-Lucas and modified Pell sequences
of order seven. The Pell sequence {p3} is defined

recursively by:

P.,=2P_+P:n>0:P,=0,P =1 ..(1.1)

First few terms of Pell sequence are; 0, 1, 2, 5,
12,29, 70, 169... OEIS: A000129, [13].

Several authors and researchers have presented
and evaluated Pell sequence in different aspects [1-
19]. The second order recurrence relations of Pell
numbers have been generalized. Generalized Pell
numbers and their properties have been studied by
various authors [20-23]. This paper can provide new
holistic approach for further expansion of research
for the higher order generalized Pell sequences and
Pell-like sequences not only in Number theory but in
engineering, computer sciences and combinatorics.
The generalization of Pell sequence for order third,
fourth and fifth are presented by Soykan [14-20].

A generalized seventh order Pell sequence

{Hm}mzo :{Hm(Hj:O,l,...G’ ;21:1,2...7 m>0 R with the
conditions 4 =24 =LA=4=4=4=%4 js gefined
by the seventh-order recurrence relations as:

i=2 ..(1.2)
The characteristic equation of is
5
y'-2y"-3y =0
=0 ..(1.3)

Where are the roots of the above characteristic
equation (1.3) such
5 7
2, =2 HQ'J =1
Ze=? 4 (L4)
The first few generalized seventh order Pell
numbers for are given as;
5 6 7 8
Hy Hy, Hy Hy Hy He i 2Ho + ) H 2H, + ) H  2H + ) H 2H, + ) H
j=0 j=1 j=2 i=3

..(15)

Now let {P, ' }.00 {Q ntmeoand {E " }rso
be the Pell-like sequence, Pell-Lucas sequence and

modified Pell sequence from H_ of order seven

defined by the recurrence relations for each as;
6 6

*m+7 = 2P*m+5 + Z P*m+j 'Q*m+7 = 2Q*m+5 + Z Q*m+j

j=0,j#5 j=0,j=#5

6
m+7 :2E m+5+ Z E m+ j

j=0,j#5

P

*

E
...(1.6)
With the first few terms of each sequence as and
P,=0P,=LP,=2P,=5..Q,=40Q,=2Q,=6Q,=17..

E,=0,E,=LE", =1E", =3,... (L7
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The OEIS database does not contain sequences

of P }mzo, 1Q w}nz0 and {E wkneo [13], yet.

2.0 Ordinary Generating Functions of {Hndo

2.1 Lemma

Let me(y):iHmym is the ordinary
m=0

generating function of the generalized seventh-order

Pell sequencegH_ 3 : Then, i H oy is given by

+(H,=2H,) y+ (H,=2H, -H ) y*+.. +(H -2H,-H,~H,-H,-H,-H,)y’

BMX

1-2y- Zy
Proof. By definition of generalized seventh-order
Pell numbers and subtracting yif(y);j=12..7 from

f (y) respectively we have
L-2y=y =y =y =¥ =y =¥) 4 _(y)=

iHmym—Zyi Hoy" =y Hy" Y D H YT

m=0 m=0
:ZHmym_zz m+1 yszym+2 yz Hmym+7
m=0 m=0 m=0 m=0
= Z Hmym _22 Hm 1merl - yz Hn—zyerz T yz Hm—7yer7

1
4

m=0 m=1 m:
(Z iy - 2(ZH yh

By rearrangement of terms, result holds.

Corollary 1

The generated functions for Pell, Pell-Lucas and
modified Pell sequences of order seven are
respectively as;
SN y

—_—
m=o0 1_2y_zy|
i=2

S . T-12y-5y*—4y* —3y* —2y° —y©
Zme _ y—oy -4y _ y. y -y
m= 1*2)’*2)"

i=2
y—y?

Y=y
1-2y—>"y'
i=2

and

2 EL Y=

3.0 Obtaining Binet Formula from Generating
Function

3.1 Theorem 1
Generalized Binet formula for{H, } of Pell

numbers for order seven.
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{H }: dlalm + d2a2m + + d7a7m
H(aliak) H (a, — ) H(a77ak)
..(3.1)
Proof. Let
hy)=1-2y-y* =y’ =y =y’ =y =¥" =y ten
for some %1=12-7 we have
2 1 1 1 1 1 1
h(—) T e = =0
y ¥y oyt oy oy Y
Hence i,i —1,2,..7 are the roots of h(y): This gives
&
@;;i=1,2,..7 as the roots of
hy)=1-2y-y* -y’ -y -y’ —y* -y’

=y -y -y -y -y -2y*—y-1=0
Now, by (2.1) and (3.2), it follows that

Z“:H ym:HD+(H]—ZHD)y+(H2—2H1—Hu)y2+...+(H572H5—H4—H3—H2—H,—Hn)y5
= (-0 y)l-a, V) (- Y)(L-a, )L -5 Y)(L -, Y)A-a; Y)

Now
Ho+(H1_2Ho)y+(Hz_2H1_Ho)y2+-"+(He_ZHS_HA_Hs_Hz_HFHo)yG
:U]lll(l—ozI y)+U, ll[ 1-a,y)+U, ﬁ 1-y)+U, ll[ - y)+Ug ﬁ - y)+

U TT e y)+U [ T0-a )

1 we have
o

If consider y=

1 1 1
HG+(H1—2HU);+(H2—2H1—HU)Q—2+ oA (Hg=2H;—H,—H,-H,-H,-H ) —

1 1 ay
=U,0-2)a-2)a- 2 -2)a-22)a -2
1 al 1 al al al
1| Hy+(H,—2H )1 +(H,-2H, - H) ! +(H6—2H5—HA—Ha—HZ—Hl—HU)iE
a;y
:UI: (a az)(al a;)(al aA)(a1_a5)(a1_as)(a1_a7)
ETI
H(al —)
i=2
Similarly, we can obtain for U, ;k =1,2,...7
=U, =— di
H(ak - )
k,i=1

k=i

Thus (3.3) can be written as
z Hmym :Ul(l_al y)71 +U2(l—0(2 y)71 + ---+U7(1_a7 y)71
=0

:UIZ

m=0

w o

m m m m m m

a™y +U22 a’,y +...+U7E a’.y
m=0 m=0

Z(Ulam1+U2am2+...+U7am7)y”‘
m=0

m m m m
=H,=Ua" +U 0", +U,a", +...+U,a",
Corollary 2

Similarly, for seventh-order of Pell, Pell-Lucas
and modified Pell sequences are as;
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Corollary 3
The Binet formula of generalized seventh order
Pell numbers can be represented as

H - . ada”,
" H2a,°+20,° +30," +4a,° +5a,” + 60, +7
Corollary 4
1 —_—
(al - 0!2)(0,’1 _a3)(a1 - 0!4)(051 - as)(a1 —0!6)(0!1 - 0!7)

o,
2 6 2 5 4 3 2
o, +2a” +3a," +4a” +5¢,° + 60, + 7

Corollary 5
Similarly, we have for ¢;i=1,2,...7 we have

1 o,

U =2a6+2a5+3a4+4a3+5a2+6a +7
H(a _a) k 3 K K k k
k j

K, j=1
k= j

Corollary 6
We can derive the Binet formulas for Pell, Pell-
Lucas and modified Pell sequences of order seven as;
7 m+6

P = %
- 6 5 4 3 2 !
I 20, +2a,” +3a," +4a,” +5a,° + 60, +7

m
7
* m
Q m= zak
k=1 and

E* _ 7 (ak _1)akm+5
—2x°+20°+3a* +4a® +5a,° + 60, +7
respectively.

3.2 Theorem 2
For I,n € N, Catalan’s identity holds as;

* * *

E*Hn E*r—n - E*zr = (P ren P r+n—1)(P r-n_ P*r—n—l) - (P*r - P*r—l)2
For n = 1 we have Cassini identity as;
E*r+lE*r—l - E*zr = (P*r+1_ P*r)(P*r—l_ P*r—z) - (P*r - P*r—l)2

3.3 Theorem 3

The following identities are true for r,n € Z:
(i): (Melham’s identity)
E BB s E =P PP P )P s P )PP ) =P o)

(ii): (Gelin-Cesaro’s identity)

E*HQE*HIE*r—lE*H B E*Gr = (P*r+2_ P*Hl)(P*Hl_ P*r)(P*r—l_ P*rfz)(Pkr—f P*r—s) - (P*r_ P*H)4

(iii): (d’Ocagnes identity)
E* E*r - E*n E*r+1 = (P* P*m)(P*r - P*r—l) - (P*n - P*nfl)(P*

&
n+1 nl - P r)

4.0 Linear Sum of Pell, Pell-like and Modified Pell
Sequences

4.1 Theorem
For m=>0the sum of the generalized seventh
order Pell numbers we have:

YH, =%(H,M—Hm,ﬁ—ZHM—SHM—AHM—SHM—GHMst+H5—2H,—3H3+4Hz+5H1+6H0)
k=0

Proof.: Using the recurrence relation, then, solving
the above equality we obtain

H,=2H,,+H, ,+H ,+H ,+H, +H +H_ -
i..e.,

H, .,=H,-2H ,-H H H H
For m=7,8,9,10,...we have the pattern as;
Hy=H,-2H,~H;—H,—H,—H,-H,
H,=H,-2H,-H,-H,-H,-H,-H,

H, =H, —2H, —H, —H, —H, —H, —H,

H

m-2" "Im37 "Tma™ Tims ™ Tlime

Hm—7 = m_2Hm—1_Hm—Z_Hm—3_Hm—4_Hm—5_Hm—6
Hm 6~ m+l_2Hm Hm—l_Hm—Z_Hm—B_Hm—A_Hm—S
Hm 5 = m+2_2Hm+1_Hm_Hm—l_Hm—Z_Hm—3_Hm—4
Hm—4:Hm+3_2Hm+2_Hm+1_Hm_Hm—l_Hm—Z_Hm—3

Hm 3= Hm+4_2Hm+3_ Hm+2 _Hm+1_ Hm - Hm—l_ Hm—Z
Hm—2 = m+5_2Hm+4_Hm+3_Hm+2_Hm+1_Hm_Hm—1
Hm 17 m+6_2Hm+5_Hm+4_Hm+3_Hm+2_Hm+1_Hm

Hm = Hm+7 _2Hm+6 - Hm+5 - Hm+4 - Hm+3 - Hm+2 - Hm+1
Now, by rearrangement we have

ZHk :(Hmn + Hms* Hm~5+Hm~A t Hm+ Hmz*HmA’Hs’Ha ’HA’Ha’Hz - H1’Ho+sz)
k=0 k=0

-2(H +H_,+H +H

+ Hm~5+ Hm~4 + Hm+3 m2 ml +Hm+3

m m5 md

'Hs'HA'Ha'Hz'HFHoJfZHk)‘(H
k=0

+H,.,+H

m+2 ml

'Ha'Hz'Hl'Hn

mil

_H4_Ha_Hz_HFHoJ'ZHk)‘(HmﬁHmA3+Hm~z+H
k=0

m

+ZHk)_(H +H +Hm+1_Hz_Hl_Ho+ZHk)_(Hm+z+Hm+1_H1_Hn+sz)_
k=0 k=0

m3 m2

Corollary 7
For m>0 the sum of the seventh order

{Pm*}mzo’ {Q*m}mzo and {E*m}mzosequences are

5 * 5 5 5

o1 .
P k :?(P k+7 -P k+6 -2P k+5_3P k+4_4P k+3_5P k+2_6P k+1_1)

~~
M= =

=
i

0



(b)

o~ L. . . . . - -
ZQ k =?(Q k+7 7Q k+572Q k+573Q k+474Q k+375Q k+276Q k+171)
k=0

(©)

m

™

1. ,, N N N ,, “
E k =?(E k+7_E k+6_2E k+5_3E k+4_4E k+3_5E k+2_6E k+1)

k=0
5.0 Conclusions

We derived an explicit formula for the
generalized pell sequences and pell-like sequences of
order seven. These derivations may extend higher
order of generalized pell sequences and pell-like
sequences for further expansion to innovative ways.
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