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ABSTRACT 

 

The increasing contamination of natural water bodies due to diverse human activities 

necessitates a comprehensive approach to monitoring water quality, especially 

considering its widespread use in daily life. This study addresses the escalating 

contamination of natural water bodies, emphasizing the need for a robust real-time 

water quality monitoring system. Focused on evaluating Triveni Sangam, Prayagraj, 

where the Ganga and Yamuna rivers converge, the study recognizes the crucial role of 

continuous monitoring in safeguarding precious water resources. To achieve this, a 

sophisticated framework has been proposed, leveraging a Spark server to simulate 

streaming data. This dynamic approach ensures uninterrupted and real-time assessment 

of water quality, crucial for the effective management of water resources. The system 

categorizes training data using the Water Quality Index (WQI) and employs Naive Bayes 

classification for real-time data, achieving an impressive accuracy of 82.21%. The 

results underscore the effectiveness of learning from streaming data, emphasizing its 

utility for monitoring water quality in real-time. This study contributes significantly to 

ongoing water resource management initiatives but also highlights the pivotal role of 

machine learning in addressing pressing environmental challenges. 
 

Keywords: Streaming Data; WQI; Real-Time Monitoring; Classification; Incremental 

Learning. 

 

1.0 Introduction 
 

Water, a paramount natural resource and a vital national asset constitutes the 
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primary element of the ecosystem. The assessment of water quality in a specific area or 

source involves considering physical, chemical, and biological parameters. Utilizing a 

Water Quality Index (WQI) is one of the most effective approaches to characterize water 

quality [1]. The WQI condenses extensive information into a single value, offering a 

comprehensive representation of the water system’s overall status by combining data 

from various sources. In the context of India, the Ganga and Yamuna rivers, revered as 

sacred waterways, play a crucial role in sustaining numerous communities in northern 

India. Unfortunately, both rivers face significant pollution challenges [2]. 

The Ganga River’s water serves various purposes, including agriculture, 

domestic use, and industrial activities, necessitating a comprehensive assessment of its 

quality across different sectors [3, 4]. Our experimental focus was the Sangam region in 

Prayagraj, Uttar Pradesh, India, where the Ganga and Yamuna rivers converge. This 

specific location was chosen to enable a comparative analysis of the individual rivers. 

Moreover, cultural factors significantly contribute to the degradation of water quality. 

The site holds immense religious importance, with millions of people taking holy dips at 

the Sangam throughout the year.  

The peak of tourist activity occurs during the Kumbh Mela, the world’s largest 

gathering, which takes place every 12 years. In the 2013 Kumbh Mela, a staggering 120 

million people took a dip at Sangam, with a single-day maximum count reaching 30 

million [5]. Figure 1 illustrates the Google map of the Sangam region, with boat symbols 

denoting the survey points for the Ganga and Sangam during the investigations. WQI is a 

crucial tool for assessing water quality [7]. Particularly, the National Sanitation 

Foundation Water Quality Index (NSFWQI) stands out as a popular technique for 

categorizing surface water quality. Although definitions and parameters for computing 

WQI may vary, the primary purpose remains consistent: the quantification of water 

quality for objective analysis.  

WQI essentially determines the optimal water usage for various purposes by 

considering multiple parameters such as temperature, total dissolved solids (TDS), pH, 

dissolved oxygen (DO), biochemical oxygen demand (BOD), conductivity, fluoride, 

oxidation-reduction potential (ORP), mercury, cobalt, oil, and grease [8]. By 

synthesizing these diverse water quality parameters, the WQI generates a single value, 

offering a comprehensive assessment of the overall water quality at a specific location 

and time. WQI plays a crucial role in translating intricate water quality data into 

actionable information and gauging the suitability of water for different applications. 

The quality index typically ranges from 0 to 100, with lower scores indicating better 

water quality for various usages. 
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Figure 1: Study Area of Ganga River and Sangam Area [6] 

 

 
 

Machine learning methods are widely embraced for their capacity to analyze 

data, uncover patterns, and predict outcomes, especially when dealing with extensive 

datasets collected from diverse scenarios. Water quality monitoring using machine 

learning involves the application of advanced algorithms and computational models to 

analyze and interpret data related to water characteristics. Machine learning algorithms 

excel in processing large datasets, making them valuable tools for assessing and 

predicting water quality. These models can analyze parameters such as pH, DO, 

turbidity, and pollutant concentrations, deriving meaningful insights and patterns that 

might be challenging for traditional methods. Machine learning enables the development 

of predictive models that can forecast changes in water quality over time, providing early 

warnings for potential issues. By leveraging machine learning in water quality 

monitoring, authorities and environmental agencies can make informed decisions, 

implement preventive measures, and contribute to the sustainable management of water 

resources. 
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This study aims to achieve real-time monitoring of water quality at Triveni 

Sangam, Prayagraj. Traditionally, water quality assessment relies on laboratory testing, 

which is a time-consuming process. To address this limitation, we propose a real-time 

approach that continuously updates information on water quality using reliable methods. 

The study focuses on monitoring five key parameters: pH, DO, conductivity, 

temperature, and ORP. IoT devices are employed to collect streaming data, which is then 

processed using a pretrained machine learning algorithm. The assessed water quality 

parameters are promptly displayed on a PC or mobile device in real time. The study 

extends our previous research on Quality Assessment and Monitoring of River Water 

Using IoT Infrastructure [9] by proposing a real-time water quality monitoring system. 

 

2.0 Background and Context 

 

2.1 Water Quality Index 

A Water Quality Index (WQI) is a mathematical technique that provides briefs 

description of the overall water quality in a particular location. WQI is defined as a 

rating that reflects the composite influence of different water quality parameters [10].The 

purpose of a WQI is to simplify the complexity of water quality data and make it more 

understandable for the general public. The calculation of a Water Quality Index typically 

involves assessing multiple water quality parameters such as pH, DO, biochemical 

oxygen demand, nutrient levels, temperature, and the presence of pollutants. Each 

parameter is assigned a weight or importance factor based on its significance to water 

quality. The individual scores for each parameter are then aggregated, and the final WQI 

score is calculated. There are various methods [11] to calculate the water quality index 

based on the parameters are used shown in Table 1 : 

 

Table 1: Water Quality Index [11] 

 

a. Weighted Average Water Quality Index (WAWQI) 

b. National Sanitation Foundation Water Quality Index (NSFWQI) 

c. Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI) 

d. Oregon Water Quality Index (OWQI) 

 

2.2 Weighted Average Water Quality Index (WAWQI) 

[11]:The Weighted Average Water Quality Index (WAWQI) is a specific type of 

Water Quality Index (WQI) that incorporates a weighted approach to reflect the 

importance of different water quality parameters such as pH,DO, conductivity, 
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temperature and ORP. The calculation of a WAWQI involves assigning weights to 

various water quality parameters based on their significance to overall water quality. 

These weights are then used to compute a weighted average, providing a single 

numerical value that represents the composite water quality at a particular location. The 

basic purpose of this method is to classified the water quality according to the water 

purity by using the most commonly measured water quality parameter. Here’s a 

simplified formula for calculating a weighted average water quality index: 

WAWQI =  
∑ 𝑊𝑖∗𝑄𝑖
𝑛
𝑖=1

∑ 𝑊𝑖
𝑛
𝑖=1

       …(1) 

where: 

WAWQI is the Weighted Average Water Quality Index. 

Wi is the weight assigned to the ith water quality parameter. 

Qi is the quality rating scale of ith water quality parameter. 

The value of Qi or each parameter is calculated using this expression: 

𝑄𝑖 = 100 ∗ [
𝑉𝑖−𝑉0

𝑆𝑖−𝑉0
]       …(2) 

where, 

Vi = estimated concentration of ith parameter in the analysed water. 

V0 = ideal value of this parameter in pure water. Si = recommended standard value of ith 

parameter 

For each water quality parameter, the value of unit Weight(Wi) is calculated by 

using the following formula: 

𝑊𝑖 =
𝐾

𝑆𝑖
         …(3) 

where, K is proportionality constant and it can be calculated by this formula :  

𝐾 =
1

∑ (
1

𝑆𝑖
)𝑛

𝑖=1

        …(4) 

The rating of water quality refers to the assessment and measurement of various 

parameters and characteristics in water to determine its suitability for specific purposes 

or to identify potential risks to human health and the environment.  
 

Table 2: Water Quality Rating as per WAWQI[11] 

 

WQI Value Rating of Water Quality 

0 − 25 Excellent water quality 

26 − 50 Good water quality 

21 − 75 Poor water quality 

76 − 100 Very Poor water quality 

Above 100 Unsuitable for drinking purpose 



Water Quality Monitoring on Streaming Data 103 
 

Water quality ratings are often expressed on a scale or in categories that reflect 

the level of contamination, pollutants, or other factors affecting the water. According to 

the Weighted Average Water Quality Index shown in Table 2, the Water quality rating 

may use different scales or categories, often ranging from excellent to poor. Water 

Quality Rating as per WAWQI is shown in the Table 2. 

 

3.0 Related Work 

 

Water quality monitoring is a critical aspect of environmental management, 

addressing the challenges of pollution and ensuring the sustainable use of water 

resources. Traditional methods of water quality assessment often involve extensive 

experimental requirements, making real-time monitoring a complex task. In recent years, 

researchers have explored innovative approaches, particularly leveraging machine 

learning techniques, to automate and enhance the accuracy of water quality monitoring. 

A framework employing a variety of sensors for real-time monitoring of water flow, 

conductivity, temperature, turbidity, pH, and more is proposed in [12]. The constant data 

feeds from the Internet of Things (IoT) devices contribute to effective flood predictions, 

allowing authorities to issue early warnings and minimize casualties during floods. This 

approach highlights the potential of machine learning in disaster management through 

continuous monitoring. [13] delves into various applications of AI algorithms for 

assessing water quality across different conditions, including surface water, 

groundwater, drinking water, sewage, and seawater. The study anticipates future 

implementations of AI approaches for water quality management, emphasizing the 

versatility of these techniques across diverse water environments. 

A variety of classification techniques have been used for streaming data 

depending on the particular use case. In [14] conducts a thorough evaluation of artificial 

intelligence approaches—specifically, support vector machines (SVM), group method of 

data handling (GMDH), and artificial neural networks (ANN for forecasting water 

quality in the Tireh River, southwest Iran is discussed.. The study demonstrates the 

effectiveness of both ANN and SVM models in predicting various water quality aspects. 

A cost-effective water quality monitoring system leveraging cloud computing, machine 

learning, and the Internet of Things is proposed in [15]. This model not only offers an 

alternative to existing monitoring methods but also dynamically regulates water 

temperature based on ambient air temperature. Fitore’s research [16] tackles time series 

challenges in water quality data using diverse models such as SVM, ANN, deep neural 

network (DNN), and more. The F-score metric is employed for performance evaluation, 
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validated through a replication study. The other real-time forecasting and ML studies 

[17–19] show the importance and efficiency of ML methods in this domain. 

Miller’s work [20] introduces a novel method for predicting theWater Quality 

Index (WQI) using machine learning algorithms over a two-decade period in an urban 

lake. The study not only predicts WQI but also uncovers intricate relationships between 

various water-quality parameters. Machine learning, grounded in both statistical and 

computational principles, is showcased as a powerful tool for handling complex 

environmental datasets. The use of IoT devices can also be used for continuous water 

quality monitoring, as demonstrated in [9]. The study presents an IoT infrastructure-

based river water quality monitoring and assessment system. The research uses sensor 

probes to monitor specific parameters like pH, DO, temperature, conductivity, and 

oxidation–reduction potential. The incorporation of machine learning techniques, such as 

principal component analysis and factor analysis, aids in feature selection and weight 

assignment for accurate water quality assessment. In conclusion, the integration of 

machine learning techniques into real-time water quality monitoring systems can offer 

promising results in terms of accuracy, continuous assessment, and early detection of 

environmental issues. This study focuses on the potential of these approaches in diverse 

water environments, paving the way for more effective and automated water quality 

management systems. 

 

4.0 Methodology 

 

Utilizing labeled data andWQI values, our model is trained on five parameters: 

pH, DO, conductivity, temperature, and ORP, as depicted in Figure 2. 
 

Figure 2: Proposed Framework 
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This training enables the classification of water samples into specific classes. 

Subsequently, the model can classify samples from streaming data. Spark is employed 

for streaming-related processes, facilitating data processing, as discussed in the Spark 

streaming section. The initial ML model object is trained using the random parameter 

weights, while it is further updated incrementally on receiving the new data samples. 

Different ML models have been utilized to evaluate the performance of the proposed 

framework. A dedicated server simulates streaming data, continuously sending data at a 

predetermined interval. In our Spark application, we connect to the server using the 

socket API. The application listens continuously at the specified port, collecting data 

over a defined interval (e.g., 10 seconds) to update model parameters during the training 

phase and predict labels during testing. Each phase of the proposed framework is 

explained in detail in the subsequent sections. 

 

4.1 Gaussian Naive Bayes (GNB) 

Naive Bayes serves as a classification algorithm suitable for both two-class and 

multi-class classification problems. It simplifies the calculation of probabilities for each 

hypothesis, making computations manageable. The algorithm assumes independence 

among all attributes, leading to the calculation of their Bayes probability values through 

the product rule. For real-valued attributes following a Gaussian distribution, Naive 

Bayes can be applied. The Gaussian Naive Bayes (GNB) is a specific variant that 

adheres to the Gaussian Distribution Model. It requires the calculation of mean and 

standard deviation from the training data, providing an estimate of the distribution of the 

training data. 

 

4.2 Incremental learning 

In a contemporary system with vast data volumes, the adoption of machine 

learning algorithms capable of incremental learning becomes crucial. Incremental 

learning allows for parameter updates whenever new data, often in the form of streams, 

becomes available. In scenarios involving online parameter updates, it is neither practical 

nor efficient to have the entire dataset in memory and reapply the entire algorithm. 

Gaussian Naive Bayes, a simple yet effective system in the machine learning and 

statistics literature, provides a solution for incremental learning in classification. The 

ease with which conditional probability estimates are derived in Naive Bayes makes it a 

preferred choice for handling streaming data. GNB stands out as an incremental, online, 

or one-time version of the naive Bayes algorithm. This characteristic allows GNB to 

fully leverage previously trained classifiers, adding value to past efforts. The continuous 

learning process merely necessitates the presence of the new training set in memory, 
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ensuring a swift and efficient updating process [21]. For Incremental learning, the 

updated mean (μ) and variance (σ2) of the data in the case of Gaussian Naive Bayes can 

be computed easily as follows: 

Online Mean updation 

μupdated = (nnew ∗ μnew + npast ∗ μpast ) /ntotal 

where, nnew is the size of incoming stream of data, μnew is the mean of the incoming 

stream of data, npast is the size of data on which our model is currently trained, μpast is 

previous mean, and ntotal can be represented as: 

ntotal = nnew + npast 

Online Variance updation 

ssdold = varpast ∗npast 

ssdnew = varnew ∗nnew 

ssdtotal = ssdold + ssdnew + (nold ∗ nnew /ntotal ) ∗ (μpast − μnew )2 

varupdated = ssdtotal /ntotal 

where, ssdold, ssdnew, ssdtotal represents the previous, new and total sum of squared 

differences respectively. varupdated is the updated variance. 

 

4.3 Real time stream handling 

In this paper, Spark Streaming was employed due to its inherent capabilities in 

managing both streaming and batch data, aligning with the necessity for processing 

continuous sensor readings and predicting water quality. Apache Spark Streaming is a 

component of the broader Spark API, providing a suite of tools for extensive data 

processing. Recognized for its fault tolerance and seamless integration with diverse data 

sources, Spark Streaming is a widely adopted tool in the field. Following the application 

of necessary transformations and extraction of pertinent information from the data 

stream, the processed data can be directed to live websites, updated at specified intervals, 

or stored in databases as dictated by the application. The continuous data stream received 

through DStream is further elaborated in the next subsection. 

 

4.3.1 Discretized streams 

The foundational concept here is DStream, or Discretized Streams, depicted in 

Figure 3. This abstraction represents any continuous form of raw or processed data. It’s 

crucial to understand that, despite its name, DStream is essentially an abstraction, 

encompassing a sequence of Resilient Distributed Datasets (RDDs), which are internal 

data structures in Spark. These RDDs, while immutable, can undergo various 

transformations to yield new RDDs. In the diagram, each RDD corresponds to data for a 
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specific time interval, such as time 0 to 1. Spark Streaming provides two categories of 

streaming sources: 

i. Basic sources: These are default sources provided by the Spark Streaming 

context. Examples include socket connections, as utilized in our case. 

ii. Advanced sources: Extra utility classes facilitate integration with sources like 

Kafka, Kinesis, etc. 

In our specific application, we leverage Basic sources, creating a DStream that 

represents streaming data from a TCP source, with a specified hostname (e.g., localhost) 

and port (e.g., 9999). For each RDD in the datastream, we systematically process and 

extract data to incorporate the current batch into our model and update parameters 

accordingly. 

 

Figure 3: Discretized Streams 

 

 
 

5.0 Results and Discussion 

 

This section outlines the outcomes of the streaming data classification 

experiments conducted using Google Colaboratory (GC), Apache Kafka, and an Apache 

Spark Cluster. The GC setup utilizes Python 3.7 and offers a single GPU cluster 

featuring an NVIDIA K80 GPU, 12 GB RAM, and a clock speed of 0.82 GHz. The 

deployed sensor network collected real-time data for pH, DO, conductivity, temperature, 

and ORP, storing the data in a database. Apache Kafka 2.13 was employed to stream the 

input data in real-time. The realtime streamed data frames were processed on the 

heterogeneous Apache Spark Cluster (ASC), consisting of one master and four worker 

nodes. All nodes ran on the Ubuntu 16.04 LTS operating system, Python 3.7.3, and 

Spark version 3.0.0. Among the worker nodes, two featured an Intel® Xeon(R) CPU E5-

2630 v3 @ 2.40GHz processor with 32 cores and 32 GB RAM, while the other two had 

an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz with 8 cores and 8 GB RAM. For end-

to-end training, the GNB model underwent training with a batch size of 10 and testing 
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with a batch size of 7, utilizing the SGD classifier. The dataset was split into training and 

testing sets, containing 80% and 20% of the data, respectively. 

 

Table 3: Alpha vs Accuracy Evaluation using SGD 

 

Alpha Accuracy 

0.1 0 

0.01 0 

0.001 0.273 

0.0001 0.305 

0.00001 0.4107 

 

In the case of SGD, the training model utilized two customized parameters: 

alpha, representing the weight of regularization, and the loss function, which assesses the 

model’s performance. Additionally, several hyper parameters were set to their default 

values. The regularization parameter, denoted as : “alpha,” governs the strength of 

regularization. A higher alpha value enforces stronger regularization, potentially 

resulting in a simpler model with smaller coefficients. The model underwent testing with 

varying alpha values, and the highest accuracy was achieved at alpha = 0.00001, as 

indicated in Table 3, presenting the correlation between Alpha and accuracy for the SGD 

experiments. Alpha serves as the weight determining the extent of regularization. 

Initially set at 0.1, it undergoes a tenfold reduction in each iteration. The accuracy 

plotted against alpha is illustrated in Figure 4. 

 

Figure 4: Alpha vs Accuracy Graph using SGD 
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The second parameter utilized in the SGD classifier is the loss function, which 

evaluates the model’s performance by quantifying the difference between the expected 

and actual outputs generated by the model. SGD enhances model performance by 

iteratively adjusting its parameters to minimize the loss function. Three loss functions—

Hinge Loss, Log Loss, and Mean Squared Loss—were applied in this model. After 

computation, the Mean Squared Loss function yielded the highest accuracy of 0.4107 

among the three functions, as depicted in Table 4. 

 

Table 4: Loss Function vs Accuracy using SGD 

 

Function Accuracy 

Hinge Loss 0.273 

Log Loss 0.19 

Mean Squared Loss 0.4107 

 

Moreover, the GNB classifier is a pre-trained model employed for incremental 

learning. The dataset is split into two sets: 80% for the training phase and 20% for the 

testing phase. During the training phase, the model is trained for 3 epochs with a batch 

size of 10. The sample training data, which includes information on five parameters, is 

illustrated in Table 5. Each row in the table represents one set of sensor readings. The 

obtained batch is utilized to update the model using online mean and variance updating 

for GNB, as discussed earlier. Finally, when the streaming process is completed, the 

model is saved as a pickle file, named gnb model.pkl. 

In the subsequent testing phase, the first step involves loading the saved model 

(gnb model.pkl). For each set of labeled data obtained, we predict the class using our 

model with a batch size of 7, as illustrated in Table 6. 

 

Table 5: Sample Training Data for GNB 

 

S. No. DO pH ORP Cond TEMP Label 

1. 12.43 13.21 0.15 54.68 18.19 very Poor 

2. 10.83 13.28 0.15 54.65 18.34 very Poor 

3. 9.24 13.29 0.14 54.44 18.24 very Poor 

4. 8.78 13.27 0.14 54.57 18.45 very Poor 

5. 8.61 13.33 0.14 54.10 18.23 very Poor 
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Table 6: Sample Testing Data for GNB 

 

S. No. DO pH ORP Cond TEMP Label Predicted 

1. 9.43 8.19 0.11 406.45 18.16 Excellent very Poor 

2. 9.43 8.18 0.11 406.34 18.16 Excellent very Poor 

3. 9.43 8.16 0.11 406.32 18.16 Excellent very Poor 

4. 9.43 8.19 0.11 406.43 18.16 Excellent very Poor 

5. 9.43 8.17 0.11 406.33 18.16 Excellent very Poor 

 

Upon completion of the streaming process, the accuracy is computed by dividing 

the number of correct predictions by the total number of data points, resulting in an 

accuracy of 82.21%. 

 

Table 7: Comparison of Classifier’s Accuracy 

 

Classifier Hyperparameters Accuracy 

SGD 
Alpha: 0.00001 

Loss function: squared loss 
41.07% 

Gaussian Naïve Bayes None 82.21% 

 

In the discussion of both SGD and GNB classifiers within the context of this 

research, the main issue centered around accuracy, as analyzed in subsection 6.2 above. 

Upon evaluating the results of both classifiers, it becomes evident that the GNB 

classifier outperforms SGD, as detailed in Table 7. The accuracy of SGD is merely 

41.07%, which is significantly lower compared to the GNB classifier with an accuracy of 

82.21%. Therefore, the GNB classifier stands out as the more suitable model for the 

classification of water quality parameters such as pH, DO, Conductivity, ORP, and 

Temp. 

 

6.0 Conclusion and Future work 

 

This study affirms the superiority of online learning algorithms, particularly 

when dealing with the escalating volume of data. Leveraging Apache Spark Streaming, 

we efficiently handled the continuous influx of data, demonstrating its efficacy in real-

time applications. Two incremental learning methods, GNB and SGD, were 

implemented for water quality monitoring. The results revealed a substantial difference 

in accuracy, with Naive Bayes showcasing superior performance at 82.21%, compared to 



Water Quality Monitoring on Streaming Data 111 
 

SGD’s 41.07%. The research emphasizes the critical role of continuous water quality 

monitoring, showcasing its applicability for real-time scenarios, such as the monitoring 

of the Ganga River in the Sangam area. The prompt identification of deteriorating water 

quality enables timely interventions by authorities, safeguarding aquatic life from 

prolonged exposure to poor water conditions. The findings underscore the potential of 

machine learning models, advanced streaming technologies, and continuous monitoring 

methodologies, advocating for their widespread adoption in comprehensive water quality 

monitoring initiatives. Future work should focus on enhancing the accuracy of online 

learning models, exploring additional machine learning algorithms, and extending the 

study to diverse geographical regions for a comprehensive water quality monitoring 

framework. Additionally, integrating more advanced sensor technologies and expanding 

the dataset would contribute to refining the predictive capabilities of the models. 
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