CHAPTER 36

From Black Boxes to Glass Boxes:
Interpretable Quantum Machine Learning through Explainability Tools
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ABSTRACT

Quantum Machine Learning (QML) has emerged as a promising paradigm that leverages
quantum mechanical principles to accelerate machine learning tasks. Despite its potential,
most QML models remain opaque “black boxes,” hindering their deployment in high-stakes
or regulated domains where trust and accountability are essential. This work introduces two
novel interpretability methods tailored for QML: Quantum Shapley Values (QSV) and
Quantum Local Interpretable Model-Agnostic Explanations (Q-LIME). QSV adapts
cooperative game theory to quantify the contribution of individual qubits, observables, or
circuit parameters, while Q-LIME generates perturbed quantum states and trains surrogate
classical models to approximate local decision boundaries. Through experiments on
variational quantum classifiers and hybrid quantum-classical neural networks, we
demonstrate that QSV provides rigorous attribution but suffers from scalability constraints,
whereas Q-LIME yields efficient, approximate explanations suitable for near-term devices.
By transforming quantum models from opaque “black boxes” into interpretable “glass
boxes,” this research lays the foundation for trustworthy, transparent, and human centred
quantum Al
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1.0 Introduction

Quantum Machine Learning (QML) is an emerging field at the intersection of
quantum computing and artificial intelligence, aiming to harness superposition,
entanglement, and interference to accelerate machine learning tasks. Recent advances in
variational quantum circuits and hybrid quantum-classical models suggest that QML could
soon play a central role in achieving quantum advantage for optimization, chemistry, and
data analysis.
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Yet, a critical barrier remains: interpretability. Like their classical counterparts,
quantum models often function as black boxes, offering predictions without transparent
reasoning. This opacity is problematic in domains where accountability is essential.
Quantum models introduce unique challenges: high-dimensional Hilbert spaces,
probabilistic measurement outcomes, and entangled representations make attribution of
predictions non-trivial.

In classical Al, explainability tools like Shapley values and LIME have advanced
transparency. However, direct application to quantum systems is infeasible due to
differences in representation. While early efforts exist, a systematic framework for
Explainable Quantum Machine Learning (XQML) is still lacking.

This work introduces two novel tools:

e Quantum Shapley Values (QSV): Rigorous, cooperative game-theoretic feature
attribution in quantum systems.

e Quantum-LIME (Q-LIME): A surrogate-modeling approach that perturbs quantum
states to yield locally interpretable explanations.

1.1 Contributions

1. We define a framework for Explainable Quantum Machine Learning (XQML).

2. We propose QSV and Q-LIME as new interpretability methods for QML.

3. We evaluate both methods on variational quantum classifiers and hybrid networks.

4. We analyze trade-offs between interpretability and performance across qubit scales.
By turning QML models into ‘“glass boxes,” we contribute to the foundation of
responsible and transparent quantum Al

2.0 Related Work

Research in classical Explainable Al (XAI) has developed robust frameworks such
as SHAP, LIME, and counterfactual explanations. In QML, limited work has been done to
adapt interpretability.

Existing efforts include visualizing quantum feature maps and limited attribution
methods. However, these lack generality and scalability. Our approach builds upon these
ideas to formalize and extend interpretability into the quantum domain.

3.0 Methodology

We introduce two interpretability techniques:
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e Quantum Shapley Values (QSV): Adapt cooperative game theory to quantum models.
QSYV attributes the contribution of each qubit, observable, or circuit parameter to model
outputs. Exact computation is exponential, so we employ Monte Carlo sampling.

e Quantum-LIME (Q-LIME): Extend LIME by perturbing quantum states or circuit
parameters, generating new local samples in Hilbert space. A simple surrogate model
(e.g., linear regression) is then trained to approximate the local decision boundary,
producing interpretable feature weights.

3.1 Experimental setup

e Tested on variational quantum classifiers and hybrid quantum-classical neural
networks.

e Datasets include quantum states encoding classification problems.

¢ Evaluation metrics: explanation fidelity, runtime, and scalability.

4.0 Results and Analysis
e QSV: Provided rigorous attribution with high fidelity for small circuits (< 10 qubits).
Runtime increased steeply with qubit count.

e Q-LIME: Produced efficient local explanations with acceptable fidelity up to 20 qubits.
Sensitive to perturbation strategy but more scalable than QSV.

Table 1: Fidelity vs. Number of Qubits

Number of Qubits QSYV Fidelity Q-LIME Fidelity
4 0.95 0.92
6 0.90 0.88
8 0.82 0.85
10 0.70 0.82
12 0.60 0.79
14 0.48 0.75
16 0.35 0.73
18 0.25 0.70
20 0.18 0.68
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Table 2: Runtime vs. Number of Qubits
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Observation: QSV runtime increases exponentially; Q-LIME grows approximately

quadratically.

Table 3: Runtime Overhead Comparison Across Different System Sizes

Number of QSV Runtime Q-LIME Runtime Runtime Overhead Ratio (QSV
Qubits (seconds) (seconds) / Q-LIME)
4 0.5 3 0.17
6 1.5 7 0.21
8 5 13 0.38
10 15 21 0.71
12 45 31 1.45
14 135 43 3.14
16 400 57 7.02
18 1200 73 16.44
20 3600 91 39.56

This table compares the runtime overhead (e.g., time taken to compute
explanations) for QSV and Q-LIME as system size (number of qubits) increases. The values
are approximate and normalized based on simulated trends.

Observation: QSV's runtime grows exponentially, making it increasingly less
efficient compared to Q-LIME for larger qubit counts.
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Fidelity vs. Number of Qubits (QSV vs. Q-LIME)
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Table 4: Attribution Stability Scores for QSV Across Qubits

Qubit | Stability Score (0—| |*™ =mommy
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Qubit 0 0.96

Qubit 1 0.93

Qubit 2 0.90

Qubit 3 0.89 i

Qubit 4 0.87

Qubit 5 0.84

Qubit 6 0.81

Qubit 7 0.78

Qubit 8 0.75 e e
Qubit 9 0.72 wes pas

This table shows the stability of attribution scores produced by Quantum Shapley
Values (QSV) across multiple runs. A stability score near 1.0 indicates consistent
attribution; lower scores suggest variability due to approximation noise or quantum
uncertainty.

Observation: Attribution stability declines gradually with more qubits, likely due to
increased sampling noise and circuit complexity.
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Table 5: Method Comparison Summary

Criteria QSVv Q-LIME
Type Global (Shapley-based) Local (surrogate-based)
Fidelity High (for <10 qubits) Medium-to-high (up to 20 qubits)
Runtime Exponential Polynomial
Scalability Poor (<10 qubits) Good (up to 20+ qubits)
Interpretability Scope Circuit-level, Qubit attribution Local decision boundary
Approximation Method Monte Carlo Sampling Classical surrogate regression
Hardware Compatibility Better with simulators Suitable for NISQ devices
5.0 Key Findings

e SV is more faithful but less scalable.
e Q-LIME is more efficient but approximate.
e Hybrid models yield explanations more easily than purely quantum models.

6.0 Discussion

6.1 Implications for trustworthy quantum Al

Interpretability makes QML viable for sensitive domains such as healthcare,
finance, and scientific discovery. Tools like QSV and Q-LIME move quantum Al toward
human centred and accountable use.

6.2 Performance—interpretability trade-offs
Interpretability incurs computational overhead. Applications must balance fidelity
vs. efficiency depending on their requirements.

6.3 Scalability Challenges
Both methods face Hilbert space exponential growth. Approximation strategies and
improved hardware are essential for large-scale adoption.

6.4 Ethical and Societal Considerations

e Explanations may reveal biases but cannot eliminate them.

e Interpretability must not create overconfidence.

e Transparent methods align with responsible innovation in quantum Al

6.5 Limitations
e  Current results limited to < 20 qubits.
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Approximation introduces variability.
Further domain-specific validation needed.

7.0 Conclusion and Future Work

This work establishes a foundation for Explainable Quantum Machine Learning

(XQML) through QSV and Q-LIME. These tools enable qubit-level and local decision-
boundary explanations, offering greater trust in QML systems.

7.1 Future work

Develop scalable approximation strategies.
Test on real quantum hardware.
Establish benchmarks for interpretability in QML.
Conduct user studies for trustworthiness evaluation.
By moving QML from “black boxes” to “glass boxes,” this research advances the

pursuit of transparent and trustworthy quantum Al
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