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ABSTRACT 

 

Climate change intensifies risks for sustainable urban development, with rapid urbanization 

magnifying challenges such as heat stress, flooding, and resource strain. Conventional climate 

models, though scientifically advanced, often demand substantial computational capacity and 

fall short in delivering real-time, localized insights for adaptive decision-making. Recent 

advances in Artificial Intelligence (AI) and smart technologies offer promising solutions, yet 

existing applications remain fragmented, focusing on isolated tasks rather than holistic 

integration. This study addresses that gap by employing an integrated AI–smart system model 

that combines machine learning, IoT-based sensing, and edge computing for climate monitoring 

and prediction. The model was tested in urban contexts for heatwave detection, flood 

forecasting, and energy optimization. Results show enhanced prediction accuracy, faster 

anomaly identification, and improved resource allocation when compared with baseline models. 

Importantly, the outcomes directly contribute to the United Nations Sustainable Development 

Goals, especially SDG 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action). 

By demonstrating practical, scalable improvements, this research provides evidence that 

integrating AI with smart systems can move beyond experimental phases to deliver actionable 

insights for climate-resilient urban planning and sustainable development. 

 

Keywords: Artificial Intelligence; Smart systems; Climate change modeling; Sustainable 

development goals; Climate resilience; IoT. 

 

1.0 Introduction 

 

 Climate change continues to pose one of the most pressing challenges of the 21st 

century, and its impacts are especially pronounced in urban regions. Rapid population 

growth, dense infrastructure, and social vulnerabilities amplify the exposure of cities to 

multiple hazards, including prolonged heatwaves, recurring floods, escalating energy 

demand, and stress on critical resources [10], [15], [24]. These interlinked threats jeopardize 

the long-term sustainability of urban environments and the health and safety of their 

inhabitants. 
_________________________ 
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 Although global circulation models (GCMs) and regional climate simulations 

provide robust scientific insights, their dependence on intensive computational 

infrastructure limits their ability to produce high-resolution, real-time forecasts required by 

city planners [1], [2], [11], [20]. In addition, their centralized nature restricts responsiveness 

to the rapidly evolving conditions that characterize climate extremes [23]. 

 Recent advances in digital technologies offer a pathway to overcome these barriers. 

Artificial Intelligence (AI) enables predictive accuracy by leveraging machine and deep 

learning [9], [10], while the Internet of Things (IoT) supports continuous, fine-grained 

monitoring of environmental conditions [12]. Complementing these, edge computing 

minimizes latency by processing data close to its source, thereby enhancing timeliness in 

applications such as hazard detection [3], [17]. When combined, these technologies present 

the opportunity to build adaptive and context-aware systems capable of addressing urban 

climate risks more effectively. 

 Despite growing interest, most research efforts remain limited to single-issue 

applications—for example, flood forecasting or energy management—without a 

comprehensive integration across hazards [8], [11], [20]. To address this gap, this study 

introduces and tests a unified AI–IoT–edge computing model that supports multi-hazard 

climate monitoring and decision-making. The proposed framework is applied to three urban 

domains—heatwave detection, flood prediction, and energy optimization—while explicitly 

aligning outcomes with the United Nations’ Sustainable Development Goals, particularly 

SDG 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action) [15], [24]. 

 

2.0 Literature Review 

 

2.1 AI and machine learning in climate applications 

 Over the past decade, AI has become increasingly relevant in environmental 

sciences, evolving from theoretical exploration to operational deployment. Machine 

learning approaches have been shown to support both mitigation, such as emission 

reduction strategies, and adaptation, including disaster preparedness and smart energy 

management [1].  

 Reichstein et al. [10] demonstrate how deep learning, especially when combined 

with process-based knowledge, advances Earth system science by improving the 

representation of complex environmental processes. Other studies highlight ensemble 

learning and hybrid deep learning methods as effective for forecasting, anomaly detection, 

and optimizing system performance [2], [16]. Nonetheless, concerns persist regarding the 

interpretability, generalizability, and sustainability of these models in real-world contexts 

[13], [19]. 
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Figure 1: Evolution of Climate Modeling Approaches from Traditional GCMs to 

Integrated AI–IoT–Edge Smart Systems 

 

 
 

2.2 IoT and edge computing in climate resilience 

 Edge computing has emerged as a critical enabler for near real-time responses to 

climate hazards. By processing data closer to the sensor, these systems minimize delays and 

enhance the reliability of time-sensitive predictions, such as those required for floods and 

heatwaves [3], [17]. Hybrid models that combine LSTM, GRU, and transformer-based 

neural networks have significantly improved forecasting accuracy and lead time in flood 

risk management [4], [5], [11], [20]. At the same time, reinforcement learning (RL) and 

deep reinforcement learning (DRL) approaches have proven effective for managing urban 

energy flows by balancing supply and demand, thereby reducing peak loads [6], [7], [19], 

[21]. However, large-scale deployment is often hindered by issues related to transparency, 

data governance, and cybersecurity [14], [22]. 

 

2.3 Smart sensing and multi-hazard research gaps 

 IoT-based sensing technologies have rapidly expanded, offering affordable and 

granular monitoring of variables such as temperature, rainfall, soil moisture, and energy 

consumption. Witczak et al. [8] emphasize their potential for scalability but also point to 

challenges including interoperability, calibration, and data protection. Subsequent reviews 

have underlined the growing relevance of AI–IoT integration in fields ranging from 

agriculture to urban planning [12], [18]. Despite these advancements, three critical 

shortcomings remain: 

1. The majority of studies target single hazards rather than adopting multi-hazard 

frameworks [11], [20]; 

2. Operational-scale validation in real urban environments remains limited [16], [18]; and 

3. Concerns about privacy, cost, and long-term governance persist [14], [22]. 
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 The present study responds to these challenges by designing and implementing an 

integrated AI–IoT–edge framework that delivers actionable predictions across multiple 

hazards. By validating the framework in the domains of heatwaves, floods, and energy 

demand, the research contributes new evidence for climate-resilient urban planning while 

aligning with the broader global agenda on sustainability [15], [24], [25]. 

 

3.0 Methodology 

 

 This study applies a hybrid research design that integrates IoT-based sensor 

networks with satellite remote sensing datasets to construct a scalable framework for 

climate resilience in urban areas. The methodology is divided into three stages: data 

collection, data integration, and model development. 

 

3.1 Data collection 

 

3.1.1 Primary data (IoT sensor network) 

 An array of 50 IoT sensor nodes was installed across diverse urban landscapes, 

including residential neighborhoods, industrial sectors, and flood-prone districts. The 

sensors recorded data at five-minute intervals to capture rapid environmental fluctuations. 

Pre-deployment calibration ensured accuracy, while anomaly detection techniques were 

applied to filter outliers. 

 

Table 1: Primary Data Collected through IoT Sensors 

 

Parameter Sensor Type Unit Frequency Purpose 

Air Temperature Thermistor/DHT22 °C 5 min 
Heatwave detection, LST 

validation 

Relative Humidity 
Hygrometer (IoT-

based) 
% 5 min Microclimate assessment 

Rainfall Tipping-bucket gauge mm/hr 5 min 
Flood forecasting, rainfall 

validation 

Soil Moisture Capacitive probe 
% 

(VWC) 
5 min Flood risk mapping 

Air Quality 

(PM2.5/10) 
Optical particle sensor µg/m³ 5 min Pollution–climate interaction 

CO₂ Concentration NDIR sensor Ppm 5 min Urban emissions monitoring 

Energy Consumption Smart energy meter kWh 5 min 
Energy optimization, demand 

prediction 
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3.1.2 Secondary data (satellite datasets) 

 To complement local IoT observations, openly available satellite datasets were 

incorporated. These sources provide broader spatial coverage and allow cross-validation of 

ground-based measurements. Each dataset was chosen based on its relevance to urban 

climate challenges such as heatwaves, flooding, and energy demand. 

 

Table 2: Secondary (Satellite) Data used in the Study 

 

Dataset / 

Mission 

Provider / 

Agency 
Parameter(s) Resolution 

Temporal 

Frequency 
Purpose in Study 

MODIS 

(Terra/Aqua) 
NASA 

Land Surface 

Temperature (LST) 
1 km Daily 

Validate IoT 

temperature, detect heat 

islands 

GPM (IMERG) 
NASA–

JAXA 
Precipitation Intensity 

0.1° (~10 

km) 
30 min 

Validate rainfall sensors, 

flood forecasting 

Sentinel-2 
ESA 

Copernicus 

Optical Imagery 

(NDVI, land cover) 
10–20 m 5 days 

Vegetation analysis, 

microclimate impacts 

Sentinel-1 SAR 
ESA 

Copernicus 

Flood Inundation 

(Radar backscatter) 
10 m 6–12 days 

Flood extent mapping, 

soil moisture validation 

VIIRS Night 

Lights 

NOAA–

NASA 

Nighttime Light 

Intensity 
500 m Monthly 

Energy use proxy, 

validate IoT energy data 

 

3.2 Data integration and preprocessing 

 The IoT point measurements were spatially interpolated and synchronized with the 

gridded satellite datasets. Preprocessing included: 

• Interpolation of missing IoT sensor values. 

• Cloud masking and resampling of Sentinel-2 images. 

• Normalization of all variables to ensure comparability. 

• Derivation of indices such as NDVI (vegetation cover), LST anomalies, and flood 

extent maps from SAR backscatter. 

 This step ensured both local (sensor) and regional (satellite) data were harmonized 

into a unified dataset for machine learning training. 

 

3.3 Model development 

Three domain-specific predictive modules were developed: 

• Heatwave detection: LSTM and GRU networks trained on IoT temperature and MODIS 

LST data, incorporating NDVI as a mitigating factor. 

• Flood forecasting: A hybrid LSTM–GRU model combining IoT rainfall/soil data with 

GPM precipitation maps, validated using Sentinel-1 SAR flood extents. 
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• Energy optimization: Deep Reinforcement Learning (DRL) algorithms using IoT 

energy data, calibrated with VIIRS night-time lights as a proxy for urban demand. 

 

3.4 Evaluation metrics 

Models were evaluated using standard statistical and performance measures: 

• Heatwaves: RMSE, MAE, and F1-score for anomaly detection. 

• Flooding: Precision, Recall, and Heidke Skill Score (HSS). 

• Energy: Peak load reduction (%), allocation efficiency (%), and response time (ms). 

 

4.0 Result 

 

 The outputs of the integrated AI–IoT–Edge framework are presented under three 

hazard domains—heat stress, flooding, and urban energy demand—followed by a 

demonstration of the multi-hazard decision-support dashboard. Both ground-based IoT 

measurements and open-access satellite datasets were used for validation, and performance 

was quantified with error metrics, accuracy rates, and efficiency gains. 

 

4.1 Heatwave monitoring 

 Temperature data collected from IoT nodes across urban, residential, and green 

zones were evaluated against MODIS land surface temperature (LST) products. As 

expected, urban centers exhibited the strongest heat island effects, whereas vegetated parks 

showed significant cooling benefits. NDVI values confirmed the influence of vegetation 

density in moderating extreme heat. 

 

Table 3: Comparison of IoT and MODIS Temperature Observations 

 

Location Type Avg. IoT Temp (°C) MODIS LST (°C) NDVI Value Observation 

Dense Urban 38.5 37.9 0.25 Urban heat island detected 

Residential 35.2 34.8 0.42 Moderated heat stress 

Vegetated Park 32.8 32.1 0.72 Cooling effect from vegetation 

 

Model Performance: 

• RMSE (IoT vs MODIS): 0.84 °C 

• R²: 0.91 (strong correlation) 

• Extreme heat anomaly detection accuracy: 93% 

 Figure 2 shows the sensor–satellite agreement, with NDVI values highlighting the 

role of vegetation in urban cooling. 
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Figure 2: IoT vs MODIS LST with NDVI Influence 

 

 
 

4.2 Flood forecasting 

 IoT rainfall gauges were compared with NASA–JAXA GPM precipitation 

estimates and validated against Sentinel-1 SAR-derived flood maps. The integrated AI 

model consistently predicted flood events earlier than traditional baselines, reducing false 

alarms and improving lead times. 

 

Table 4: IoT vs GPM Rainfall and SAR Flood Validation 

 

Day IoT Rainfall (mm/hr) GPM Rainfall (mm/hr) SAR Flood Extent (km²) Flood Detected 

10 24.5 23.7 12.3 Yes 

15 8.2 9.0 – No 

20 27.1 25.8 14.7 Yes 

 

Model Performance: 

• RMSE (IoT vs GPM rainfall): 1.1 mm/hr 

• Flood detection accuracy (SAR validation): 91% 

• Average warning lead-time gain: 120 minutes 

• False alarms reduced by 18% 

 Figure 3 illustrates rainfall dynamics across 30 days, with flood-triggering events 

correctly identified on Days 10 and 20. 
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Figure 3: IoT vs GPM Rainfall with SAR Flood Events 

 

 
 

4.3 Energy demand optimization 

 Smart meter data were used to compare baseline consumption with AI-driven 

demand shaping using Deep Reinforcement Learning (DRL). The optimized curve 

successfully flattened demand peaks and reduced load stress on the grid, especially during 

evening hours. 

 

Table 5: Comparison of Baseline vs. DRL-Optimized Energy Demand 

 

Hour of Day Baseline Demand (kWh) DRL-Optimized Demand (kWh) Reduction (%) 

14:00 95.3 79.6 16.4% 

18:00 102.7 83.1 19.0% 

21:00 98.4 82.2 16.5% 

 

Model Performance: 

• Peak demand reduction: 18.1% 

• Daily energy savings: 11.7% 

• Next-hour demand forecast accuracy: 95% (R² = 0.93) 

• Grid load variance reduction: 22% 
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Figure 4: Demonstrates How DRL Optimization Redistributes  

Energy Demand, Curbing Evening Peaks 

 

 
 

Figure 5: Multi-Hazard Integrated Dashboard (Mockup) 
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4.4 Multi-hazard dashboard 

 Finally, a mock-up dashboard was built to show how multiple hazard domains can 

be managed in real time. The dashboard integrates temperature anomalies, rainfall triggers, 

flood warnings, and energy demand predictions into a single decision-support interface. 

System-Wide Performance: 

• Multi-hazard prediction accuracy: 92% 

• Latency reduction from edge computing: 35% 

• Multi-hazard alert precision: 89% 

• Usability score from expert review: 4.5/5 

 Figure 5 presents the dashboard design, where heatwave alerts, flood risk levels, 

and energy demand forecasts are displayed side by side. This tool demonstrates how AI–

IoT–Edge integration can deliver actionable insights for climate-resilient urban planning 

 

5.0 Discussion 

 

 The study’s outcomes confirm that integrating IoT, artificial intelligence, and edge 

processing can significantly advance urban climate resilience. The results are not only about 

performance improvements but also about explaining the mechanisms behind those gains 

and linking them to sustainable development practices. 

 

5.1 Vegetation and urban heat moderation 

 The close agreement between ground-level sensors and MODIS LST (R² = 0.91) 

validates the reliability of multi-source integration for heat monitoring. The NDVI overlay 

revealed a pronounced cooling influence of green spaces, with vegetated areas consistently 

recording 3–4 °C lower temperatures than dense urban zones. This finding supports earlier 

claims that vegetation moderates urban microclimates through shading and 

evapotranspiration [1]. It also demonstrates how fine-grained sensing can generate 

actionable insights for designing nature-based solutions, strengthening the evidence base for 

climate-adaptive urban planning. 

 

5.2 Flood forecasting with faster response windows 

 The hybrid IoT–satellite rainfall model extended early warning times by nearly two 

hours compared to conventional approaches. These improvements align with previous 

studies showing that edge computing reduces latency for time-sensitive climate applications 

[8]. By validating predictions with Sentinel-1 SAR images and reducing false alarms by 

18%, the system not only improves accuracy but also enhances trust in automated alerts. 
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Importantly, the results underscore how decentralized processing can convert raw sensor 

data into timely, life-saving information for emergency response. 

 

5.3 Reshaping energy demand with reinforcement learning 

 The reinforcement learning model reduced peak load by around 20% and smoothed 

demand curves by 22%, confirming its capacity for adaptive optimization. These results 

echo prior findings that reinforcement learning and deep reinforcement learning can 

stabilize urban energy systems under stress conditions [4]. Unlike predictive models that 

only forecast demand, the approach here demonstrated prescriptive capabilities, actively 

reshaping consumption patterns. This is especially relevant for reducing reliance on backup 

fossil-fuel generation, directly contributing to climate mitigation goals (SDG 13). 

 

5.4 Added value of multi-hazard integration 

 A major contribution of this research is the multi-hazard dashboard, which 

consolidates diverse climate risks into a unified decision-support interface. This approach 

addresses a gap in existing studies, which often examine hazards in isolation rather than 

holistically [8]. Performance improvements were evident in both accuracy (92%) and 

response speed (35% faster due to edge processing), but usability was equally significant. 

Expert reviewers highlighted the system’s potential to reduce decision fatigue by presenting 

heat, flood, and energy risks together, enabling more coherent planning. 

 

5.5 Broader significance and next steps 

 Collectively, these findings illustrate the potential of AI–IoT–edge systems to 

transform climate adaptation from reactive to anticipatory. The NDVI-based cooling 

insights provide tangible justification for urban greening strategies; extended flood lead 

times reinforce the value of sensor–satellite synergy; and optimized energy load curves 

highlight AI’s ability to support sustainability while maintaining operational stability. At 

the same time, challenges remain around interoperability, governance, and long-term 

financing, echoing concerns raised in the literature [1][8]. Future research should explore 

wider applications, including drought monitoring, wildfire prediction, and air quality 

management, to expand the multi-hazard capacity of integrated systems. 

 

6.0 Conclusion 

 

 This study demonstrates that an integrated AI–IoT–Edge framework can 

significantly enhance urban climate resilience by addressing heatwaves, floods, and energy 

demand management. Combining high-resolution IoT sensor networks with satellite remote 
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sensing enabled accurate, real-time monitoring and multi-hazard prediction. Results 

highlight the cooling effect of urban vegetation, reinforcing the role of green infrastructure 

in climate-adaptive planning. The hybrid IoT–satellite flood model improved early warning 

times by nearly two hours while reducing false alarms, illustrating the value of 

decentralized, edge-based processing. Deep reinforcement learning optimized energy 

consumption, reducing peak loads by over 18% and improving grid efficiency. A multi-

hazard decision-support dashboard consolidated these insights, enabling timely and 

informed urban planning. Collectively, these outcomes demonstrate that AI–IoT–Edge 

systems can transform urban climate management from reactive measures to proactive, 

anticipatory strategies, supporting Sustainable Development Goals 11 and 13. 

 

7.0 Future Scope 

 

 Future research can expand the framework to incorporate additional hazards such as 

drought, wildfires, extreme winds, and air quality events for comprehensive urban 

monitoring. Integrating socio-economic and demographic data can support equitable, 

context-specific adaptation strategies. Advancements in adaptive sensor deployment, 

energy-efficient edge computing, and self-learning AI models can further enhance 

scalability and robustness. Long-term validation across diverse cities, alongside solutions 

for interoperability, cybersecurity, and governance, will ensure sustainable implementation. 

These improvements can establish AI–IoT–Edge systems as essential tools for climate-

resilient and sustainable urban development globally 
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