CHAPTER 47

Integrating AI and Smart Systems for Climate Change Modeling Towards
Sustainable Development Goals (SDGs)

Aishwarya Borse*

ABSTRACT

Climate change intensifies risks for sustainable urban development, with rapid urbanization
magnifying challenges such as heat stress, flooding, and resource strain. Conventional climate
models, though scientifically advanced, often demand substantial computational capacity and
fall short in delivering real-time, localized insights for adaptive decision-making. Recent
advances in Artificial Intelligence (AI) and smart technologies offer promising solutions, yet
existing applications remain fragmented, focusing on isolated tasks rather than holistic
integration. This study addresses that gap by employing an integrated Al-smart system model
that combines machine learning, IoT-based sensing, and edge computing for climate monitoring
and prediction. The model was tested in urban contexts for heatwave detection, flood
forecasting, and energy optimization. Results show enhanced prediction accuracy, faster
anomaly identification, and improved resource allocation when compared with baseline models.
Importantly, the outcomes directly contribute to the United Nations Sustainable Development
Goals, especially SDG 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action).
By demonstrating practical, scalable improvements, this research provides evidence that
integrating Al with smart systems can move beyond experimental phases to deliver actionable
insights for climate-resilient urban planning and sustainable development.

Keywords: Artificial Intelligence; Smart systems; Climate change modeling; Sustainable
development goals; Climate resilience; loT.

1.0 Introduction

Climate change continues to pose one of the most pressing challenges of the 21st
century, and its impacts are especially pronounced in urban regions. Rapid population
growth, dense infrastructure, and social vulnerabilities amplify the exposure of cities to
multiple hazards, including prolonged heatwaves, recurring floods, escalating energy
demand, and stress on critical resources [10], [15], [24]. These interlinked threats jeopardize
the long-term sustainability of urban environments and the health and safety of their
inhabitants.
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Although global circulation models (GCMs) and regional climate simulations
provide robust scientific insights, their dependence on intensive computational
infrastructure limits their ability to produce high-resolution, real-time forecasts required by
city planners [1], [2], [11], [20]. In addition, their centralized nature restricts responsiveness
to the rapidly evolving conditions that characterize climate extremes [23].

Recent advances in digital technologies offer a pathway to overcome these barriers.
Artificial Intelligence (Al) enables predictive accuracy by leveraging machine and deep
learning [9], [10], while the Internet of Things (IoT) supports continuous, fine-grained
monitoring of environmental conditions [12]. Complementing these, edge computing
minimizes latency by processing data close to its source, thereby enhancing timeliness in
applications such as hazard detection [3], [17]. When combined, these technologies present
the opportunity to build adaptive and context-aware systems capable of addressing urban
climate risks more effectively.

Despite growing interest, most research efforts remain limited to single-issue
applications—for example, flood forecasting or energy management—without a
comprehensive integration across hazards [8], [11], [20]. To address this gap, this study
introduces and tests a unified Al-IoT—edge computing model that supports multi-hazard
climate monitoring and decision-making. The proposed framework is applied to three urban
domains—heatwave detection, flood prediction, and energy optimization—while explicitly
aligning outcomes with the United Nations’ Sustainable Development Goals, particularly
SDG 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action) [15], [24].

2.0 Literature Review

2.1 AI and machine learning in climate applications

Over the past decade, Al has become increasingly relevant in environmental
sciences, evolving from theoretical exploration to operational deployment. Machine
learning approaches have been shown to support both mitigation, such as emission
reduction strategies, and adaptation, including disaster preparedness and smart energy
management [1].

Reichstein et al. [10] demonstrate how deep learning, especially when combined
with process-based knowledge, advances Earth system science by improving the
representation of complex environmental processes. Other studies highlight ensemble
learning and hybrid deep learning methods as effective for forecasting, anomaly detection,
and optimizing system performance [2], [16]. Nonetheless, concerns persist regarding the
interpretability, generalizability, and sustainability of these models in real-world contexts
[13], [19].
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Figure 1: Evolution of Climate Modeling Approaches from Traditional GCMs to
Integrated AI-IoT-Edge Smart Systems
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2.2 IoT and edge computing in climate resilience

Edge computing has emerged as a critical enabler for near real-time responses to
climate hazards. By processing data closer to the sensor, these systems minimize delays and
enhance the reliability of time-sensitive predictions, such as those required for floods and
heatwaves [3], [17]. Hybrid models that combine LSTM, GRU, and transformer-based
neural networks have significantly improved forecasting accuracy and lead time in flood
risk management [4], [5], [11], [20]. At the same time, reinforcement learning (RL) and
deep reinforcement learning (DRL) approaches have proven effective for managing urban
energy flows by balancing supply and demand, thereby reducing peak loads [6], [7], [19],
[21]. However, large-scale deployment is often hindered by issues related to transparency,
data governance, and cybersecurity [14], [22].

2.3 Smart sensing and multi-hazard research gaps

IoT-based sensing technologies have rapidly expanded, offering affordable and
granular monitoring of variables such as temperature, rainfall, soil moisture, and energy
consumption. Witczak et al. [8] emphasize their potential for scalability but also point to
challenges including interoperability, calibration, and data protection. Subsequent reviews
have underlined the growing relevance of Al-IoT integration in fields ranging from
agriculture to urban planning [12], [18]. Despite these advancements, three critical
shortcomings remain:
1. The majority of studies target single hazards rather than adopting multi-hazard

frameworks [11], [20];

2. Operational-scale validation in real urban environments remains limited [16], [18]; and
3. Concerns about privacy, cost, and long-term governance persist [14], [22].
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The present study responds to these challenges by designing and implementing an
integrated Al-loT—edge framework that delivers actionable predictions across multiple
hazards. By validating the framework in the domains of heatwaves, floods, and energy
demand, the research contributes new evidence for climate-resilient urban planning while
aligning with the broader global agenda on sustainability [15], [24], [25].

3.0 Methodology

This study applies a hybrid research design that integrates loT-based sensor
networks with satellite remote sensing datasets to construct a scalable framework for
climate resilience in urban areas. The methodology is divided into three stages: data
collection, data integration, and model development.

3.1 Data collection

3.1.1 Primary data (IoT sensor network)

An array of 50 IoT sensor nodes was installed across diverse urban landscapes,
including residential neighborhoods, industrial sectors, and flood-prone districts. The
sensors recorded data at five-minute intervals to capture rapid environmental fluctuations.
Pre-deployment calibration ensured accuracy, while anomaly detection techniques were
applied to filter outliers.

Table 1: Primary Data Collected through IoT Sensors

Parameter Sensor Type Unit |Frequency Purpose
. . . Heatwave detection, LST
Air Temperature Thermistor/DHT22 °C 5 min e? gve etection
validation
Relative Humidity Hygrometer (IoT- % Smin |Microclimate assessment
based)
. . . Flood forecasting, rainfall
Rainfall T -bucket m/h 5 o ’
ainfa ipping-bucket gauge | mm/hr min | dation
Soil Moisture Capacitive probe % Smin |Flood risk mappin
p p (VWC) pping
Al li . . . . . . .
(PI;/S? 11:)}; Optical particle sensor | pg/m? 5min |Pollution—climate interaction
CO: Concentration NDIR sensor Ppm Smin |Urban emissions monitoring
E timization, d d
Energy Consumption | Smart energy meter kWh 5 min nerg y. optimization, deman
prediction
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3.1.2 Secondary data (satellite datasets)

To complement local IoT observations, openly available satellite datasets were
incorporated. These sources provide broader spatial coverage and allow cross-validation of
ground-based measurements. Each dataset was chosen based on its relevance to urban
climate challenges such as heatwaves, flooding, and energy demand.

Table 2: Secondary (Satellite) Data used in the Study

D Provi T 1
a.tas'et / rovider / Parameter(s) Resolution empora Purpose in Study
Mission Agency Frequency
Validate IoT
MODIS Land Surface
ASA 1 km Dail h
(Terra/Aqua) NAS Temperature (LST) aily temperat}lre, detect heat
islands
NASA- o . 0.1° (~10 . Validate rainfall sensors
PM (IMER P I ’
GPM ( G) TAXA recipitation Intensity km) 30 min flood forecasting
ESA ical I i lysi
Sentinel-2 S . Optical Imagery 10-20m 5 days V.egetaj[lon ar.la ysis,
Copernicus | (NDVI, land cover) microclimate impacts
Sentinel-1 SAR ESA Flood Inundation 10m 6-12 days Fl.ood e.xtent mapplr.lg,
Copernicus | (Radar backscatter) soil moisture validation
VIIRS Night NOAA- Nighttime Light Energy use proxy,
Lights NASA Intensity S00m Monthly validate IoT energy data

3.2 Data integration and preprocessing
The IoT point measurements were spatially interpolated and synchronized with the
gridded satellite datasets. Preprocessing included:
¢ Interpolation of missing loT sensor values.
¢ Cloud masking and resampling of Sentinel-2 images.
e Normalization of all variables to ensure comparability.
e Derivation of indices such as NDVI (vegetation cover), LST anomalies, and flood
extent maps from SAR backscatter.
This step ensured both local (sensor) and regional (satellite) data were harmonized
into a unified dataset for machine learning training.

3.3 Model development

Three domain-specific predictive modules were developed:

e Heatwave detection: LSTM and GRU networks trained on loT temperature and MODIS
LST data, incorporating NDVI as a mitigating factor.

o Flood forecasting: A hybrid LSTM—GRU model combining [oT rainfall/soil data with
GPM precipitation maps, validated using Sentinel-1 SAR flood extents.
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o Energy optimization: Deep Reinforcement Learning (DRL) algorithms using IoT
energy data, calibrated with VIIRS night-time lights as a proxy for urban demand.

3.4 Evaluation metrics

Models were evaluated using standard statistical and performance measures:

e Heatwaves: RMSE, MAE, and F1-score for anomaly detection.

e Flooding: Precision, Recall, and Heidke Skill Score (HSS).

e Energy: Peak load reduction (%), allocation efficiency (%), and response time (ms).

4.0 Result

The outputs of the integrated Al-IoT-Edge framework are presented under three
hazard domains—heat stress, flooding, and urban energy demand—followed by a
demonstration of the multi-hazard decision-support dashboard. Both ground-based IoT
measurements and open-access satellite datasets were used for validation, and performance
was quantified with error metrics, accuracy rates, and efficiency gains.

4.1 Heatwave monitoring

Temperature data collected from IoT nodes across urban, residential, and green
zones were evaluated against MODIS land surface temperature (LST) products. As
expected, urban centers exhibited the strongest heat island effects, whereas vegetated parks
showed significant cooling benefits. NDVI values confirmed the influence of vegetation
density in moderating extreme heat.

Table 3: Comparison of IoT and MODIS Temperature Observations

Location TypeAvg. IoT Temp (°C) MODIS LST (°C) NDVI Value Observation
Dense Urban 38.5 37.9 0.25 Urban heat island detected
Residential 35.2 34.8 0.42 Moderated heat stress
Vegetated Park 32.8 32.1 0.72 Cooling effect from vegetation
Model Performance:

e RMSE (IoT vs MODIS): 0.84 °C
e R? 0.91 (strong correlation)
e Extreme heat anomaly detection accuracy: 93%
Figure 2 shows the sensor—satellite agreement, with NDVI values highlighting the
role of vegetation in urban cooling.
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Figure 2: IoT vs MODIS LST with NDVI Influence
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4.2 Flood forecasting

IoT rainfall gauges were compared with NASA-JAXA GPM precipitation
estimates and validated against Sentinel-1 SAR-derived flood maps. The integrated Al
model consistently predicted flood events earlier than traditional baselines, reducing false
alarms and improving lead times.

Table 4: IoT vs GPM Rainfall and SAR Flood Validation

Day | IoT Rainfall (mm/hr) | GPM Rainfall (imm/hr) | SAR Flood Extent (km?) | Flood Detected
10 24.5 23.7 12.3 Yes
15 8.2 9.0 - No
20 27.1 25.8 14.7 Yes
Model Performance:

RMSE (IoT vs GPM rainfall): 1.1 mm/hr
Flood detection accuracy (SAR validation): 91%
Average warning lead-time gain: 120 minutes
False alarms reduced by 18%

Figure 3 illustrates rainfall dynamics across 30 days, with flood-triggering events
correctly identified on Days 10 and 20.
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Figure 3: IoT vs GPM Rainfall with SAR Flood Events
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4.3 Energy demand optimization

Smart meter data were used to compare baseline consumption with Al-driven
demand shaping using Deep Reinforcement Learning (DRL). The optimized curve
successfully flattened demand peaks and reduced load stress on the grid, especially during
evening hours.

Table 5: Comparison of Baseline vs. DRL-Optimized Energy Demand

Hour of Day Baseline Demand (kWh) DRL-Optimized Demand (kWh) Reduction (%)
14:00 953 79.6 16.4%
18:00 102.7 83.1 19.0%
21:00 98.4 82.2 16.5%

Model Performance:

e Peak demand reduction: 18.1%

e Daily energy savings: 11.7%

e Next-hour demand forecast accuracy: 95% (R? = 0.93)
e Grid load variance reduction: 22%
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Figure 4: Demonstrates How DRL Optimization Redistributes
Energy Demand, Curbing Evening Peaks
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4.4 Multi-hazard dashboard

Finally, a mock-up dashboard was built to show how multiple hazard domains can
be managed in real time. The dashboard integrates temperature anomalies, rainfall triggers,
flood warnings, and energy demand predictions into a single decision-support interface.
System-Wide Performance:
e  Multi-hazard prediction accuracy: 92%
e Latency reduction from edge computing: 35%
e  Multi-hazard alert precision: 89%
e Usability score from expert review: 4.5/5

Figure 5 presents the dashboard design, where heatwave alerts, flood risk levels,
and energy demand forecasts are displayed side by side. This tool demonstrates how Al-
IoT-Edge integration can deliver actionable insights for climate-resilient urban planning

5.0 Discussion

The study’s outcomes confirm that integrating loT, artificial intelligence, and edge
processing can significantly advance urban climate resilience. The results are not only about
performance improvements but also about explaining the mechanisms behind those gains
and linking them to sustainable development practices.

5.1 Vegetation and urban heat moderation

The close agreement between ground-level sensors and MODIS LST (R? = 0.91)
validates the reliability of multi-source integration for heat monitoring. The NDVI overlay
revealed a pronounced cooling influence of green spaces, with vegetated areas consistently
recording 3—4 °C lower temperatures than dense urban zones. This finding supports earlier
claims that vegetation moderates urban microclimates through shading and
evapotranspiration [1]. It also demonstrates how fine-grained sensing can generate
actionable insights for designing nature-based solutions, strengthening the evidence base for
climate-adaptive urban planning.

5.2 Flood forecasting with faster response windows

The hybrid loT—satellite rainfall model extended early warning times by nearly two
hours compared to conventional approaches. These improvements align with previous
studies showing that edge computing reduces latency for time-sensitive climate applications
[8]. By validating predictions with Sentinel-1 SAR images and reducing false alarms by
18%, the system not only improves accuracy but also enhances trust in automated alerts.
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Importantly, the results underscore how decentralized processing can convert raw sensor
data into timely, life-saving information for emergency response.

5.3 Reshaping energy demand with reinforcement learning

The reinforcement learning model reduced peak load by around 20% and smoothed
demand curves by 22%, confirming its capacity for adaptive optimization. These results
echo prior findings that reinforcement learning and deep reinforcement learning can
stabilize urban energy systems under stress conditions [4]. Unlike predictive models that
only forecast demand, the approach here demonstrated prescriptive capabilities, actively
reshaping consumption patterns. This is especially relevant for reducing reliance on backup
fossil-fuel generation, directly contributing to climate mitigation goals (SDG 13).

5.4 Added value of multi-hazard integration

A major contribution of this research is the multi-hazard dashboard, which
consolidates diverse climate risks into a unified decision-support interface. This approach
addresses a gap in existing studies, which often examine hazards in isolation rather than
holistically [8]. Performance improvements were evident in both accuracy (92%) and
response speed (35% faster due to edge processing), but usability was equally significant.
Expert reviewers highlighted the system’s potential to reduce decision fatigue by presenting
heat, flood, and energy risks together, enabling more coherent planning.

5.5 Broader significance and next steps

Collectively, these findings illustrate the potential of Al-loT—edge systems to
transform climate adaptation from reactive to anticipatory. The NDVI-based cooling
insights provide tangible justification for urban greening strategies; extended flood lead
times reinforce the value of sensor—satellite synergy; and optimized energy load curves
highlight AI’s ability to support sustainability while maintaining operational stability. At
the same time, challenges remain around interoperability, governance, and long-term
financing, echoing concerns raised in the literature [1][8]. Future research should explore
wider applications, including drought monitoring, wildfire prediction, and air quality
management, to expand the multi-hazard capacity of integrated systems.

6.0 Conclusion
This study demonstrates that an integrated Al-IoT-Edge framework can

significantly enhance urban climate resilience by addressing heatwaves, floods, and energy
demand management. Combining high-resolution IoT sensor networks with satellite remote
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sensing enabled accurate, real-time monitoring and multi-hazard prediction. Results
highlight the cooling effect of urban vegetation, reinforcing the role of green infrastructure
in climate-adaptive planning. The hybrid IoT—satellite flood model improved early warning
times by nearly two hours while reducing false alarms, illustrating the value of
decentralized, edge-based processing. Deep reinforcement learning optimized energy
consumption, reducing peak loads by over 18% and improving grid efficiency. A multi-
hazard decision-support dashboard consolidated these insights, enabling timely and
informed urban planning. Collectively, these outcomes demonstrate that Al-IoT-Edge
systems can transform urban climate management from reactive measures to proactive,
anticipatory strategies, supporting Sustainable Development Goals 11 and 13.

7.0 Future Scope

Future research can expand the framework to incorporate additional hazards such as
drought, wildfires, extreme winds, and air quality events for comprehensive urban
monitoring. Integrating socio-economic and demographic data can support equitable,
context-specific adaptation strategies. Advancements in adaptive sensor deployment,
energy-efficient edge computing, and self-learning Al models can further enhance
scalability and robustness. Long-term validation across diverse cities, alongside solutions
for interoperability, cybersecurity, and governance, will ensure sustainable implementation.
These improvements can establish Al-IoT-Edge systems as essential tools for climate-
resilient and sustainable urban development globally
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