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ABSTRACT 

 

This work presented a real-time, image-based framework for fish species identification, 

classification, biomass estimation, and feeding-decision support, integrated with vernacular, 

video-based information delivery through a custom-developed Android application. The 

system combined image processing, convolutional neural networks (CNN), and cloud 

computing to enhance aquaculture practices by providing automated, accurate, and user-

friendly insights. State-of-the-art algorithms from recent literature were reviewed and 

benchmarked against the proposed CNN-based approach, which processed high-

dimensional and nonlinear image data to deliver high-accuracy predictions. 

Computationally intensive tasks were executed on cloud infrastructure, reducing hardware 

costs and resource requirements for end-users. The Android app served as an intuitive 

interface, allowing fish farmers to upload images and receive species classification, biomass 

estimation, and feeding recommendations in their native language via video format. The 

framework demonstrated the ability to effectively process high-dimensional, nonlinear 

image data and achieve superior accuracy. Offloading computationally intensive tasks to 

cloud infrastructure significantly reduced hardware costs and user-side resource 

requirements. Experimental evaluation confirmed the system’s high prediction accuracy, 

reduced processing latency, and enhanced usability, thereby offering a scalable and 

practical solution to improve aquaculture practices. 
 

Keywords: Fish species identification; Convolutional neural networks; Image processing; 

Artificial intelligence. 

 

1.0 Introduction 
 

 The aquaculture sector is central to food security and rural livelihoods, yet 

conventional fish farming still depends on manual species identification and biomass  
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measurement, which are often unreliable. Recent research highlights the use of 

Convolutional Neural Networks (CNNs) to automate classification tasks by extracting 

image features directly [1]. While CNN-based models for fish classification have been 

studied [2], their integration into mobile tools accessible to vernacular-speaking farmers 

remains limited. Existing IoT-based monitoring systems [3] often demand costly hardware, 

making them unsuitable for small-scale farmers. Likewise, mobile apps in fisheries [4] 

focus on basic data collection without incorporating real-time AI-driven prediction. To 

address this, the proposed framework combines lightweight CNNs, a vernacular Android 

interface, and IoT-based storage in MongoDB [5]. The contributions are: (i) development of 

a CNN optimized for edge devices with high accuracy and low latency and (ii) a video-

based interface for non-English-speaking farmers. This integrated approach not only 

provides a cost-effective, real-time solution but also bridges accessibility challenges in rural 

aquaculture. 

 

2.0 Literature Review 

 

Recent research highlights how deep learning, particularly Convolutional Neural 

Networks (CNNs), has transformed fish species identification by extracting features directly 

from images. Early studies emphasized CNN optimization for marine species using 

controlled datasets [6], showing improved accuracy over traditional methods [7]. Yet, such 

models required heavy computation and advanced hardware, limiting their use in small-

scale aquaculture. To overcome this, lightweight models like MobileNet and EfficientNet 

were developed, offering reduced complexity and faster inference while retaining accuracy 

[8]. These architectures enabled deployment on smartphones but were often evaluated only 

on classification, with little focus on farmer-oriented decision support. 

 

Figure 1: Workflow of the Intelligent Fish Farming Framework for Real-Time Species 

Identification and Decision Support 
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In parallel, mobile marine informatics advanced through IoT-integrated systems. 

For instance, [9] used underwater cameras and cloud-based CNNs, but dependence on 

reliable internet made rural deployment difficult. On-device inference reduced this issue but 

faced trade-offs in accuracy [10]. Beyond classification, CNNs were also applied to 

biomass estimation, essential for feeding and yield prediction. A method linking fish size to 

image pixels showed promise [11], but open-water trials faced challenges like poor lighting 

and occlusion. Recent approaches combined CNNs with multi-modal data, though often 

with costly sensors [12]. Despite these advances, vernacular interfaces remain 

underexplored. Studies stress their role in adoption [14], yet no system has unified CNN-

based identification with localized, video-based farmer interaction [13]. 

 

3.0 Methodology 

 

Figure 1 presents a complete workflow for an intelligent fish farming system that 

combines image processing, cloud computing, and deep learning to support farmers in real 

time. The process begins with something as simple as a farmer taking a photo of fish using 

a smartphone. This ease of use ensures that even those with little technical knowledge can 

participate. The image is then transferred to a dedicated Android application, which not 

only serves as the farmer’s main interface but also ensures secure transmission of data to the 

cloud. Importantly, the app presents the results in accessible formats, such as vernacular 

video instructions, breaking language and literacy barriers. 

 

Figure 2: Input–Output Flow of the Mobile Application for Fish Species Identification 

 

 
 

Once the image reaches the cloud, it undergoes pre-processing, where shape and 

contour analysis help isolate the fish from the background. These refined features are then 
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passed into a Convolutional Neural Network (CNN), which identifies the fish species and 

estimates biomass, considering details like scales, body patterns, and fin shapes. The 

outputs—species, size, and feeding advice—are immediately sent back to the farmer’s 

phone. This creates a feedback loop that allows farmers to adjust feeding strategies, reduce 

waste, and optimize resources. In essence, the pipeline transforms a simple photo into 

actionable insights, merging advanced AI with everyday aquaculture practices in a practical, 

farmer-friendly way. 

 

3.1 Application interface 

 Figure 2 illustrates how the Android-based mobile application works within the 

intelligent fish farming system. A farmer can begin by taking a new photo of a fish, 

selecting one from the gallery, or choosing from a pre-set list in the app. This image is then 

sent to the server, where a Convolutional Neural Network (CNN) analyzes key features 

such as body shape, fins, and color to identify the species. The results, including species 

name, confidence score, description, vernacular video, and GPS location, are presented 

back to the user. 

 

3.2 Convolutional neural network architecture 

 The proposed Convolutional Neural Network (CNN) architecture (Figure 3) is 

designed to classify fish species from raw images with high accuracy, making it suitable for 

aquaculture applications. The workflow begins with image acquisition, where each input is 

resized to 256 × 256 pixels. This preprocessing step ensures consistency across the dataset 

and enables efficient training. Each pixel carries RGB intensity values that preserve color, 

texture, and shape details essential for classification. 

 

Figure 3: Proposed CNN Architecture for Fish Species  

Classification with Softmax Output 
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At the core of the architecture lie convolutional layers, which apply kernels across 

the input image to extract local features such as edges, contours, and scale patterns. The 

convolution operation is mathematically represented as: 

𝑓𝑖,𝑗 = ∑ ∑ 𝐼𝑖+𝑚,𝑗+𝑛. 𝐾𝑚,𝑛
𝑁
𝑛=1

𝑀
𝑚=1       ...1 

where I is the input image, K is the kernel, and 𝑓𝑖,𝑗 represents the output feature 

map. To introduce non-linearity and enable the network to learn complex decision 

boundaries, each convolution is followed by a Rectified Linear Unit (ReLU) activation 

defined as: 

𝑓(𝑥) = max(0, 𝑥)       ...2 

After convolution, max-pooling layers reduce dimensionality while keeping 

dominant features. This is expressed as 

𝑃𝑖,𝑗 =
𝑚𝑎𝑥

(𝑚, 𝑛) ∈ 𝑅𝑓𝑖+𝑚,𝑗+𝑛       ...3 

 which selects the maximum value within a defined region R. Stacking five 

convolution and pooling layers allows the network to gradually progress from detecting 

edges and colors in early layers to species-specific traits such as scale patterns and body 

morphology in deeper layers. The extracted features are then reshaped into a single vector 

and passed through dense layers for high-level integration. The dense layer applies 

 𝑦 = 𝑓(𝑊𝑥 + 𝑏)        ...4 

where x is the flattened feature vector, W and b represent weights and biases, and f 

is the activation function. The final classification is performed using the softmax function, 

which generates probabilities across species: 

𝑃(𝑦𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑁

𝑗=1

         ...5 

where 𝑧𝑖 is the raw score for class i and N is the total number of classes. Training 

the model involves minimizing the cross-entropy loss, defined as 

𝐿 =  − ∑ 𝑦𝑖 log(𝑦𝑖̂)
𝑁
𝑖=1        ...6 

ensuring the predicted probabilities align with true labels. Together, these stages 

transform raw images into accurate predictions with confidence scores, making the CNN 

framework highly suitable for real-time aquaculture applications. 

 

3.3 App development and MongoDB integration 

 Figure 4 illustrates the integration of the Android application with backend services 

for real-time fish recognition. Once an image is uploaded, it is securely stored on Amazon 

S3 using presigned URLs, after which the URL is passed to the prediction model. The 

Node.js server coordinates communication, while a Python script loads the pretrained CNN 

model, analyzes the image, and returns the predicted species along with confidence scores, 
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descriptions, and GPS data. Results are stored in MongoDB, a flexible and scalable NoSQL 

database that maintains records such as species name, confidence, timestamps, and image 

URLs. This ensures users can access their recent searches quickly and administrators can 

track prediction histories. By combining lightweight app design with secure cloud 

integration and efficient data storage, the system provides farmers with real-time, 

accessible, and reliable aquaculture decision support.  

 

Table 1: Description of the Dataset 

 

Name of Dataset 
Number of 

Fish Species 

Total Fish 

Images 

Images after Pre-Processing 

Total Training Testing Validation 

Bihar 15 360 637 509 63 63 

Kaggle 8 1280 8000 6400 800 800 

Saline Water 18 232 7074 5660 707 707 

 

4.0 Experimental Results 

 

The system was evaluated using three datasets representing diverse aquaculture 

environments (Table 1). Overall, the datasets ensured the model was tested across 

freshwater and marine conditions, small and large species groups, and varying image 

qualities. Such diversity enhanced the reliability and generalization of the CNN framework. 

 

Figure 4: Android Application Workflow with Node.js,  

Amazon S3, and MongoDB Integration 
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4.1 Training and validation accuracy 

Figure 5 present the training and validation accuracy curves of the CNN model 

designed for fish species classification across different epochs. In each case, the model 

shows rapid learning during the initial epochs, with accuracy increasing steeply. By around 

10–15 epochs, training and validation accuracies stabilize above 90%, showing that the 

network captures essential fish features effectively. In longer runs, such as 200 epochs, the 

model continues to refine its performance, eventually converging between 96–99%. The 

close alignment of training and validation curves demonstrates strong generalization, with 

little sign of overfitting, as the validation accuracy consistently tracks the training 

performance. Although slight oscillations are visible, particularly in validation accuracy, 

they are natural due to dataset complexity and sample variations. Overall, the results 

indicate fast convergence, high accuracy, and robustness of the CNN, confirming its 

reliability for real-time fish recognition and decision support in aquaculture environments. 

 

Figure 5: Training and Validation Accuracy Curves of CNN Model for Fish Species 

Classification (a) Bihar Fish Dataset (b) Kaggle Dataset, and (c) Saline Water Dataset 

 

   

a b c 

 

4.2 Qualitative analysis of the proposed algorithm 

 Figure 6 depict how the system handles four common situations that arise when 

farmers use the app. First, it filters out non-target images so accidental uploads don’t 
mislead the workflow: a sea turtle photo is rejected as “not processed” with 99.94% 

confidence and a human face is flagged as not fish with 100%, which keeps spurious inputs 

from influencing feeding or record keeping. Second, it judges utility when the image does 
contain a marine organism. A jellyfish is classified as non-consumable at 100% confidence, 
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and a puffer fish is labeled non-preferred/dangerous with 100% confidence, preventing 
these from being treated as culture species or entering stock logs. Third, it grades size 

within a species for biomass planning and ration calculations.  

 

Figure 6: CNN Outcomes: (a), (b) Non-Fish Filtering, (c), (d) Utility Tagging, (e), (f) 

Size Grading, and (g) to (j) Premium Saline Species Recognition 

 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

 

 A small Rohu is identified with 98.95% confidence, indicating a juvenile class that 

typically needs higher frequency, lower quantity feed; a large Rohu is recognized with 

73.43% confidence—slightly lower due to pose or orientation—but still sufficient to place it 

in the marketable or near-harvest band. Finally, it recognizes premium saline species with 

very high certainty, supporting pricing and dispatch decisions: Rani at 99.99%, Tuna at 

100%, Ribbon fish at 99.96%, and Pomfret at 99.99%. These outputs appear in the app with 

species labels, confidence values, and associated metadata, allowing field users to accept or 

retake images, adjust feed amounts, update pond inventories, and tag catches for sale 

without needing specialist knowledge or additional hardware. 
 

4.3 Memory consumption of the application 

 The figure shows the storage analysis of the Fish Detection mobile application, 

highlighting its lightweight design. The application occupies only 4.40 MB of device 
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memory, with no additional storage required for data or cache. Such minimal memory 

consumption demonstrates the application’s efficiency and compatibility with low-end 

smartphones commonly used by farmers. The cloud-based design ensures that 

computationally intensive CNN tasks are performed on external servers, reducing device 

load. This lightweight footprint not only enhances accessibility for resource-limited users 

but also enables seamless installation, faster performance, and reduced battery consumption, 

making the app highly practical for real-world aquaculture deployment. 

 

5.0 Conclusion 

 

This work develops a practical, end-to-end system that helps fish farmers make 

decisions from a simple phone photo. At its core is a Convolutional Neural Network that 

recognizes 41 species with about 98% accuracy, robust across sizes and image conditions 

by learning visual cues like scales, shapes, and fin patterns. Farmers use a lightweight 

Android app to snap or upload images and get results in real time; heavy computation runs 

on cloud servers via an IoT link, so even low-cost phones stay responsive. The app’s 

vernacular video interface presents species IDs, biomass cues, and feeding suggestions in 

the farmer’s own language, lowering literacy barriers. The system also checks whether a 

photo actually contains fish, records GPS with each capture to support mapping and 

management, and separates small from large fish of the same species for biomass 

estimation, feeding schedules, harvest planning, and pricing. Each prediction includes a 

confidence score so users can judge reliability. For oversight and improvement, an admin 

console allows data extraction, quality review, and dataset growth. 

 

References 

 

1. Ghose, Bishwajit. “Fisheries and Aquaculture in Bangladesh: Challenges and 

Opportunities.” Annals of Aquaculture and Research 1(1) (2014): 1001. 

2. Håstein, T., B. Hjeltnes, A. Lillehaug, J. Utne Skåre, M. Berntssen, and A.-K. 

Lundebye. “Food safety hazards that occur during the production stage: challenges for 

fish farming and the fishing industry.” Revue Scientifique et Technique (OIE) 25(2) 

(2006): 607–625. 

3. Allken, Vaneeda, Nils Olav Handegard, Shale Rosen, Tiffanie Schreyeck, Thomas 

Mahiout, and Ketil Malde. “Fish species identification using a convolutional neural 

network trained on synthetic data.” ICES Journal of Marine Science 76(1) (2019): 342–

349. 

https://www.journalpressindia.com/website/icisi2025/proceedings


432 Innovative Sustainable Management with Intelligent Technologies 
 

DOI: 10.17492/JPI/ICISI2025/251248       ISBN: 978-93-49790-69-8 

4. Rani, S. V. J., I. Ioannou, R. Swetha, R. M. D. Lakshmi, et al. “A novel automated 

approach for fish biomass estimation in turbid environments through deep learning, 

object detection, and regression.” Ecological Informatics 79 (2024): 102632.  

5. Li, X., J. Li, Y. Wang, L. Fu, Y. Fu, B. Li, and B. Jiao. “Aquaculture Industry in China: 

Current State, Challenges, and Outlook.” Reviews in Fisheries Science 19(3) (2011): 

187–200. 

6. Ahamed, N. Nasurudeen, and Amreen Ayesha. “Marine Resources: Identification, 

Restoring, and Monitoring of Fisheries Food Resources Using Deep Learning and 

Image Processing.” In: Artificial Intelligence and Edge Computing for Sustainable 

Ocean Health (Springer Series in Applied Machine Learning) (2024): 101–121. 

7. Moga, L. M. “Cloud computing based solutions for monitoring the supply chain of fish 

and fishery products.” Proceedings of the 2017 8th International Conference on 

Intelligent Computing and Information Systems (ICICIS) (2017): 33–38.  

8. Kiranmayi, D., A. Sharma, K. P. Prasad, and R. Sharma. “Development of an Android-

Based Application System for Fish Farmers.” Agricultural Research 11(3) (2021): 443–

457. 

9. Roy, Souvik, Sayak Mondal, Shreyashree Sarkar, Sumit K. Banerjee, Suman 

Bhattacharya, and Mahamuda Sultana. “AI Based Framework for Fish Species 

Identification and Classification.” International Journal of Computer Sciences and 

Engineering 11(Special Issue 1) (2023): 81–88.  

10. Aftab, Kashif, Pascal Zeller, Bruno Pasini, Bilal Khan, et al. “Intelligent fisheries: 

Cognitive solutions for improving aquaculture commercial efficiency through enhanced 

biomass estimation and early disease detection.” Cognitive Computation 16(5) (2024): 

2241–2263. 

11. Peddina, K., and A. K. Mandava. “The intelligent object detection framework for 

detecting fish from underwater images.” International Journal of Communication 

Networks and Distributed Systems 31(1/2) (2025): 63–88. 

12. Nawaz, Umer, Muhammad Zeeshan Zaheer, Faisal Shahzad Khan, Hisham Cholakkal, 

et al. “AI in Agriculture: A Survey of Deep Learning Techniques for Crops, Fisheries 

and Livestock.” arXiv preprint arXiv:2507.22101 (2025).  

13. Hu, Zhenhua, Ran Li, Xianzhong Xia, Chaoyang Yu, Xue Fan, and Yihua Zhao. “A 

method overview in smart aquaculture.” Environmental Monitoring and Assessment 

192(8) (2020): 493.  

14. Dalal, R., S. Kadam, and D. M. Shinde. “Fish Farm Monitoring and Controlled System 

Using LoRaWAN Network.” In: Proceedings of the 5th International Conference on 

Recent Trends in Machine Learning, IoT, Smart Cities and Applications (Springer) 

(2025): 83–92. 

https://www.journalpressindia.com/website/icisi2025/proceedings

