Journal Press India®

Lung Infection Detection using Contemporary Techniques of Artificial Intellligence

Vol 2 , Issue 2 , July - December 2022 | Pages: 14-22 | Research Paper  

https://doi.org/10.17492/computology.v2i2.2202


Author Details ( * ) denotes Corresponding author

1. Shiva Prasad Koyyada, School of Computer Science, UPES University, Dehradun, Uttarakhand, India (500073479@stu.upes.ac.in)
2. Ajay Rawat, Science and Technology Facilities Council, UK Research and Innovation (UKRI), Daresbury Warrington, United Kingdom (ajay.rawat@stfc.ac.uk)
3. Thipendra P. Singh, School of Computer Science, UPES University, Uttarakhand, India (tpsingh@ddn.upes.ac.in)

Lung diseases are increasing day by day when compared to other diseases. The world has been experiencing COVID-19 since 2020 and one has no answer how to cure it in the initial days. Near future majority of the humanity will suffer from lung diseases based on studies. In this context, we are exploring contemporary artificial techniques (AI) and explaining how these will help in detecting the disease. Among Convolutional neural nets (CNNs), Regional Convolutional neural nets (RCNNs), and Vision Transformers(VT) state-of-the-art methods. The techniques are very diversified from the concept point of view. Each carries out the process in an expert wise. One who wants to automate the process can make an ensemble of these models.

Keywords

Convolutional neural nets; Vision transformers; Regional Convolutional neural nets, Lung disease


  1. A. Narin, C. Kaya, Z. Pamuk, Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks, Pattern Analysis and Applications 24 (3) (2021) 1207–1220. doi:10.1007/s10044-021-00984-y. URL https://doi.org/10.1007/s10044-021-00984-y

  2. H. Mukherjee, S. Ghosh, A. Dhar, S. M. Obaidullah, K. C. Santosh, K. Roy, Shallow convolutional neural network for covid-19 outbreak screening using chest x-rays, Cognitive Computation (Feb 2021). doi:10.1007/s12559-020-09775-9. URL https://doi.org/10.1007/s12559-020-09775-9

  3. K. Sahinbas, F. O. Catak, 24 - transfer learning-based convolutional neural network for covid-19 detection with x-ray images, in: U. Kose, D. Gupta, V. H. C. de Albuquerque, A. Khanna (Eds.), Data Science for COVID-19, Academic Press, 2021, pp. 451–466. doi:https://doi.org/10.1016/B978-0-12-824536-1.00003-4. URL https://www.sciencedirect.com/science/article/pii/B9780128245361000034

  4. S. Podder, S. Bhattacharjee, A. Roy, An efficient method of detection of covid-19 using mask r-cnn on chest x-ray images, AIMS Biophys 8 (3) (2021) 281–290.

  5. S. Yao, Y. Chen, X. Tian, R. Jiang, Pneumonia detection using an improved algorithm based on faster r-cnn, Computational and Mathematical Methods in Medicine 2021 (2021) 8854892. doi:10.1155/2021/8854892. URL https://doi.org/10.1155/2021/8854892

  6. A. Kundu, C. Mishra, S. Bilgaiyan, Covid-segnet: Diagnosis of covid-19 cases on radiological images using mask r-cnn, in: 2021 Seventh International conference on Bio Signals, Images, and Instrumentation (ICBSII), 2021, pp. 1–5. doi:10.1109/ICBSII51839.2021.9445190.

  7. D. Shome, T. Kar, S. N. Mohanty, P. Tiwari, K. Muhammad, A. Al- Tameem, Y. Zhang, A. K. J. Saudagar, Covid-transformer: Interpretable covid-19 detection using vision transformer for healthcare, International Journal of Environmental Research and Public Health 18 (21) (2021). doi:10.3390/ijerph182111086. URL https://www.mdpi.com/1660-4601/18/21/11086

  8. P. Monkam, S. Qi, H. Ma, W. Gao, Y. Yao, W. Qian, Detection and classification of pulmonary nodules using convolutional neural networks: A survey, IEEE Access PP (2019) 1–1. doi:10.1109/ACCESS.2019.2920980.

  9. I. Ahmed, A. Ahmad, G. Jeon, An iot-based deep learning framework for early assessment of covid-19, IEEE Internet of Things Journal 8 (21) (2021) 15855–15862. doi:10.1109/JIOT.2020.3034074.

  10. R. C. Joshi, S. Yadav, V. K. Pathak, H. S. Malhotra, H. V. S. Khokhar, A. Parihar, N. Kohli, D. Himanshu, R. K. Garg, M. L. B. Bhatt, R. Kumar, N. P. Singh, V. Sardana, R. Burget, C. Alippi, C. M. Travieso-Gonzalez, M. K. Dutta, A deep learning-based covid-19 automatic diagnostic framework using chest x-ray images, Biocybernetics and Biomedical Engineering 41 (1) (2021) 239–254. doi:https://doi.org/10.1016/j.bbe.2021.01.002. URL https://www.sciencedirect.com/science/article/pii/S0208521621000036

  11. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An image is worth 16x16 words: Transformers for image recognition at scale (2021). arXiv:2010.11929.

  12. K. S. Krishnan, K. S. Krishnan, Vision transformer based covid-19 detection using chest x-rays, in: 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), 2021, pp. 644–648. doi:10.1109/ISPCC53510.2021.9609375.

  13. K. Tyagi, G. Pathak, R. Nijhawan, A. Mittal, Detecting pneumonia using vision transformer and comparing with other techniques, in: 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 2021, pp. 12–16. doi:10.1109/ICECA52323.2021.9676146.

  14. L. T. Duong, N. H. Le, T. B. Tran, V. M. Ngo, P. T. Nguyen, Detection of tuberculosis from chest x-ray images: Boosting the performance with vision transformer and transfer learning, Expert Systems with Applications 184 (2021) 115519. doi:https://doi.org/10.1016/j.eswa.2021.115519. URL https://www.sciencedirect.com/science/article/pii/S0957417421009295

  15. S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object detection with region proposal networks (2016). arXiv:1506.01497.

  16. K. Long, L. Tang, X. Pu, Y. Ren, M. Zheng, L. Gao, C. Song, S. Han, M. Zhou, F. Deng, Probability-based mask r-cnn for pulmonary embolism detection, Neurocomputing 422 (2021) 345–353. doi:https://doi.org/10.1016/j.neucom.2020.10.022. URL https://www.sciencedirect.com/science/article/pii/S0925231220315186

  17. L. J. Muhammad, J. M. Amshi, S. S. Usman, I. A. Badi, I. Mohammed, O. S. Dada, A. A. Haruna, Deep learning models for classification and localization of covid-19 abnormalities on chest radiographs, in: 2021 4th International Conference on Computing Information Sciences (ICCIS), 2021, pp. 1–6. doi:10.1109/ICCIS54243.2021.9676401.

  18. S. R. Jena, S. T. George, D. N. Ponraj, Lung cancer detection and classification with dgmm-rbcnn technique, Neural Computing and Applications 33 (22) (2021) 15601–15617. doi:10.1007/s00521-021-06182-5. URL https://doi.org/10.1007/s00521-021-06182-5

  19. D. Saikrishna, M. M. Rao, B. S. Dhanush, S. Harshavardhan, B. Prudhvi, P. Rana, U. Mittal, Pneumonia detection using deep learning algorithms, in: 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM), 2021, pp. 282–287. doi:10.1109/ICIEM51511.2021.9445310.

  20. E. E.-D. Hemdan, M. A. Shouman, M. E. Karar, Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images (2020). URL http://arxiv.org/abs/2003.11055



  21.  
  22.  
Abstract Views: 61
PDF Views: 162

Advanced Search

News/Events

Dept. of MBA, Karnat...

Department of MBA, KLS, Gogte Institute of Technology, Belagavi Org...

Indira School of Bus...

Indira School of Mangement Studies PGDM, Pune Organizing Internatio...

Indira Institute of ...

Indira Institute of Management, Pune Organizing International Confe...

D. Y. Patil Internat...

D. Y. Patil International University, Akurdi-Pune Organizing Nation...

ISBM College of Engi...

ISBM College of Engineering, Pune Organizing International Conferen...

Periyar Maniammai In...

Department of Commerce Periyar Maniammai Institute of Science &...

Institute of Managem...

Vivekanand Education Society's Institute of Management Studies ...

Institute of Managem...

Deccan Education Society Institute of Management Development and Re...

S.B. Patil Institute...

Pimpri Chinchwad Education Trust's S.B. Patil Institute of Mana...

D. Y. Patil IMCAM, A...

D. Y. Patil Institute of Master of Computer Applications & Managem...

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.