Journal Press India®

Computology: Journal of Applied Computer Science and Intelligent Technologies
Vol 5 , Issue 2 , July - December 2025 | Pages: 14-33 | Research Paper

Cross-Vertical Intelligent Network Systems (CVNIS) Optimization Model for Multi-Dimensional Distributed Decision Making through Cognitive Reinforcement Learning

Author Details ( * ) denotes Corresponding author

1. * Sandeep Bhattacharjee, Assistant Professor, Amity business school, Amity University, Kolkata, West Bengal, India (sandeepbitmba@gmail.com)

Multi-dimensional decision making is not only complex but also difficult to interpret in business decision making, given the nature of the dynamicity of interacting variables in the environment. The proposed cognitive modeling framework integrates cross-vertical intelligent network systems and reinforcement learning to capture complex inter-domain dependencies. Results from analysis of five domains of Energy, Health, Traffic, Infrastructure and Market using heatmaps, correlation matrices, radar charts, and t-SNE indicate signals at domain-specific activations using heatmaps, minimal inter-domain redundancy using correlation matrix (~0.02), elevated activity observed in Traffic and Industrial sectors using radar chart and oscillatory patterns with a positive upward trend with proximal policy optimization. The framework with high-dimensional GNN representations enables a comprehensive, robust, scalable, and adaptive method for decision making with refined policies for reward-stress patterns and managing dependencies among different domains to enable better-informed business decision making.

Keywords

Cognitive graph modeling; Cross-sectoral policy decision-making; Graph Neural Networks (GNNs); Reinforcement learning optimization; Multi-domain adaptive systems; Systemic risk and resilience

  1. Abraham, A. (2003). Intelligent systems: Architectures and perspectives. Recent advances in intelligent paradigms and applications, 1-35. Retrieved from https://doi.org/10.48550/ arXiv.cs/0405009
  2. Anastassiou, G. A. (2011). Intelligent systems: approximation by artificial neural networks (Vol. 19). Heidelberg: Springer.
  3. Anderson, J. R., Boyle, C. F. & Reiser, B. J. (1985). Intelligent tutoring systems. Science, 228(4698), 456-462.
  4. Barakabitze, A. A., Ahmad, A., Mijumbi, R., & Hines, A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Computer Networks, 167, 106984. Retrieved from https://doi.org/10.1016/j.comnet.2019.106984
  5. Battiti, R., Villani, A., & Le Nhat, T. (2002). Neural network models for intelligent networks: deriving the location from signal patterns. Proceedings of AINS. Retrieved from https://www.researchgate.net/publication/2559731_Neural_Network_Models_for_Intelligent_Networks_Deriving_the_Location_From_Signal_Patterns
  6. Beer, R. D. (1996). Toward the evolution of dynamical neural networks for minimally cognitive behavior. From Animals to Animats, 4, 421-429.
  7. Byun, J., Hong, I., Kang, B. & Park, S. (2011). A smart energy distribution and management system for renewable energy distribution and context-aware services based on user patterns and load forecasting. IEEE Transactions on Consumer Electronics, 57(2), 436-444.
  8. Caudill, M., & Butler, C. T. (1990). Naturally intelligent systems. MIT press.
  9. Cesana, M., Cuomo, F., & Ekici, E. (2011). Routing in cognitive radio networks: Challenges and solutions. Ad Hoc Networks, 9(3), 228-248.
  10. Dimitrakopoulos, G., & Demestichas, P. (2010). Intelligent transportation systems. IEEE Vehicular Technology Magazine, 5(1), 77-84.
  11. Emel’yanov, S., Makarov, D., Panov, A. I., & Yakovlev, K. (2016). Multilayer cognitive architecture for UAV control. Cognitive Systems Research, 39, 58-72.
  12. Fadlullah, Z. M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., & Mizutani, K. (2017). State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Communications Surveys & Tutorials, 19(4),       2432-2455.
  13. Fortuna, C., & Mohorcic, M. (2009). Trends in the development of communication networks: Cognitive networks. Computer Networks, 53(9), 1354-1376.
  14. Fu, Y., Li, C., Yu, F. R., Luan, T. H., Zhao, P., & Liu, S. (2022). A survey of blockchain and intelligent networking for the metaverse. IEEE Internet of Things Journal, 10(4),    3587-3610.
  15. Ganin, A. A., Mersky, A. C., Jin, A. S., Kitsak, M., Keisler, J. M., & Linkov, I. (2019). Resilience in intelligent transportation systems (ITS). Transportation Research Part C: Emerging Technologies, 100, 318-329.
  16. Gelenbe, E. (2006, September). Users and services in intelligent networks. In IEE Proceedings-Intelligent Transport Systems (Vol. 153, No. 3, pp. 213-220). IET.
  17. Grosan, C., Abraham, A., Jain, L. C., & Kacprzyk, J. (2011). Intelligent systems (Vol. 17, pp. 261-268). Berlin: Springer.
  18. Kalogirou, S. A. (2001). Artificial neural networks in renewable energy systems applications: a review. Renewable and sustainable energy reviews, 5(4), 373-401.
  19. Li, D., Liu, C., & Gan, W. (2009). A new cognitive model: Cloud model. International Journal of Intelligent Systems, 24(3), 357-375.
  20. Magedanz, T., Popescu-Zeletin, R. & Thörner, J. (1998). Intelligent networks. International Thompson Computer Press.
  21. Mahmood, K., Grønsund, P., Gavras, A., Weiss, M. B., Warren, D., Tranoris, C., ... & Muschamp, P. (2019). Design of 5G end-to-end facility for performance evaluation and use case trials. In 2019 IEEE 2nd 5G World Forum (5GWF) (pp. 341-346). IEEE.
  22. Mahmood, N. H., Alves, H., López, O. A., Shehab, M., Osorio, D. P. M. & Latva-Aho, M. (2020, March). Six key features of machine type communication in 6G. In 2020 2nd 6G Wireless Summit (6G SUMMIT) (pp. 1-5). IEEE.
  23. Manickam, P., Mariappan, S. A., Murugesan, S. M., Hansda, S., Kaushik, A., Shinde, R., & Thipperudraswamy, S. P. (2022). Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare. Biosensors, 12(8), 562.
  24. McDonald, J. (2008). Adaptive intelligent power systems: Active distribution networks. Energy Policy, 36(12), 4346-4351.
  25. Meilinger, T. (2008). The network of reference frames theory: A synthesis of graphs and cognitive maps. In Spatial Cognition VI. Learning, Reasoning, and Talking about Space: International Conference Spatial Cognition 2008, Freiburg, Germany, September 15-19, 2008. Proceedings 6 (pp. 344-360). Springer Berlin Heidelberg.
  26. Mitchell, M. (2006). Complex systems: Network thinking. Artificial intelligence, 170(18), 1194-1212.
  27. Niu, H., Li, H., Gao, S., Li, Y., Wei, X., Chen, Y., ... & Shen, G. (2022). Perception‐to‐cognition tactile sensing based on artificial‐intelligence‐motivated human full‐skin bionic electronic skin. Advanced Materials, 34(31), 2202622.
  28. Posada, J., Toro, C., Barandiaran, I., Oyarzun, D., Stricker, D., De Amicis, R., ... & Vallarino, I. (2015). Visual computing as a key enabling technology for industries 4.0 and industrial internet. IEEE computer graphics and applications, 35(2), 26-40.
  29. Ran, B., & Boyce, D. (2012). Modeling dynamic transportation networks: an intelligent transportation system-oriented approach. Springer Science & Business Media.
  30. Robrock, R. B. (2002). The intelligent network-Changing the face of telecommuni-cations. Proceedings of the IEEE, 79(1), 7-20.
  31. Strasser, T., Andrén, F., Kathan, J., Cecati, C., Buccella, C., Siano, P., ... & Mařík, V. (2014). A review of architectures and concepts for intelligence in future electric energy systems. IEEE Transactions on Industrial Electronics, 62(4), 2424-2438.
  32. Sudmann, A. (2019). The Democratization of Artificial Intelligence: Net Politics in the Era of Learning Algorithms (Edition 1). transcript Verlag.
  33. Sun, Q., Li, H., Ma, Z., Wang, C., Campillo, J., Zhang, Q., ... & Guo, J. (2015). A comprehensive review of smart energy meters in intelligent energy networks. IEEE Internet of Things Journal, 3(4), 464-479.
  34. Tragos, E. Z., Zeadally, S., Fragkiadakis, A. G., & Siris, V. A. (2013). Spectrum assignment in cognitive radio networks: A comprehensive survey. IEEE Communi-cations Surveys & Tutorials, 15(3), 1108-1135.
  35. Wilamowski, B. M., & Irwin, J. D. (Eds.). (2018). Intelligent systems. CRC press.
  36. Wu, Y., Dai, H. N., Wang, H., Xiong, Z., & Guo, S. (2022). A survey of intelligent network slicing management for industrial IoT: Integrated approaches for smart transportation, smart energy, and smart factory. IEEE Communications Surveys & Tutorials, 24(2), 1175-1211.
  37. Yang, G., Xie, L., Mäntysalo, M., Zhou, X., Pang, Z., Da Xu, L., ... & Zheng, L. R. (2014). A health-IoT platform based on the integration of intelligent packaging, unobtrusive biosensor, and intelligent medicine box. IEEE transactions on industrial informatics, 10(4), 2180-2191.
  38. Yuan, X., Chen, J., Yang, J., Zhang, N., Yang, T., Han, T., & Taherkordi, A. (2022). FedSTN: Graph representation driven federated learning for edge computing enabled urban traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 24(8), 8738-8748. Retrieved from https://doi.org/10.1109/TITS.2022.3157056
  39. Zilouchian, A., & Jamshidi, M. (Eds.). (2001). Intelligent control systems using soft computing methodologies. CRC press.
  40. Zorzi, M., Zanella, A., Testolin, A., De Grazia, M. D. F., & Zorzi, M. (2015). Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence. IEEE Access, 3, 1512-1530.
Abstract Views: 1
PDF Views: 18

Advanced Search

News/Events

Dr. Moonje Institute...

C.H.M.E. Society's Dr. Moonje Institute of Management and Computer...

Book Title: Convergi...

Title: Converging Horizons in Construction and the Bu...

Update: Reviewer Nam...

Dear Reviewer, Greetings!! We are pleased to inform you that your ...

💐Heartiest Congra...

JPI team extends its heartiest Congratulations to Prof. (Dr.) Thipendr...

Ramachandran Interna...

Ramachandran International Institute of Management (RIIM), Pune Org...

PCETs Pimpri Chinchw...

PCET's Pimpri Chinchwad College of Engineering and Research Org...

Institute of Managem...

Institute of Management Technology, Nagpur Organizing International...

GENDER CULTURES: Mul...

IIULM University, Milan, Italy Organizing GENDER CULTURES: Mul...

Dept. of MBA, Karnat...

Department of MBA, KLS, Gogte Institute of Technology, Belagavi Org...

Indira School of Bus...

Indira School of Mangement Studies PGDM, Pune Organizing Internatio...

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.