Journal Press India®

FOCUS: Journal of International Business
Vol 12 , Issue 2 , July - December 2025 | Pages: 133-159 | Research Paper

Bridging the Black Box : A Systematic Review of Explainable AI Approaches in Global Financial Market Prediction and Decision-making

 
Article has been added to the cart.View Cart (0)

Author Details ( * ) denotes Corresponding author

1. * Priyanka Jha, Post- Doctoral Researcher, Management, Srinivas Institute of Management, , Mangaluru, Karnataka, India (drpriyankajha23@gmail.com)
2. Shailashree VT, Associate Professor , Srinivas Institute of Management, Srinivas Institute of Management, Mangaluru, Karnataka, India (shailashrivt@gmail.com)

Artificial Intelligence (AI) and Machine Learning (ML) are widely employed in increasingly inter-related global financial markets. However, their ‘black box’ nature challenges their use in a heterogeneous body of international regulations and diverse cultural landscapes. This systematic review argues that Explainable AI (XAI) is the most pressing solution. XAI advances transparency and trustworthiness, which is crucial for precipitating global regulatory adherence and building transnational stakeholder confidence. The review discusses how XAI applications in areas like foreign exchange forecasting, international portfolio management, and geopolitical risk assessment directly inform international investment strategies and cross-border financial stability. XAI provides a vital door for multinational corporations and financial institutions to gain transparency and insight into changing market forces on a global level. We present a state-of-the-art review and elucidate upcoming challenges for the global application of XAI, encouraging research to further incorporate XAI in practices for international business.

Keywords

Explainable AI (XAI); Global financial markets; Cross-border decision-making; Regulatory compliance; International investment strategy

  1. Adams, J. & Hagras, H. (2020). A type-2 fuzzy logic approach to explainable AI for regulatory compliance, fair customer outcomes and market stability in the global financial sector. Retrieved from https://doi.org/10.1109/fuzz48607.2020.9177542
  2. Adeniran, A., William, P. & Onebunne, A. (2024). Explainable AI (XAI) in healthcare: Enhancing trust and transparency in critical decision-making. World Journal of Advanced Research and Reviews, 23(3), 2447–2658. Retrieved from https://doi.org/10.30574/wjarr.2024.23.3.2936
  3. Agarwal, G. (2025). Explainable AI (XAI) for cyber defense: Enhancing transparency and trust in AI-driven security solutions. International Journal of Advanced Research in Science, Communication and Technology, 132–138. Retrieved from https://doi.org/10.48175/ijarsct-23624
  4. Agu, E., Abhulimen, A., Obiki-Osafiele, A., Osundare, O., Adeniran, I. & Efunniyi, C. (2024). Discussing ethical considerations and solutions for ensuring fairness in AI-driven financial services. International Journal of Frontline Research in Multidisciplinary Studies, 3(2), 1–9. Retrieved from https://doi.org/10.56355/ijfrms.2024.3.2.0024
  5. Aljunaid, S. K., Almheiri, S. J., Dawood, H. & Khan, M. A. (2025). Secure and transparent banking: Explainable AI-driven federated learning model for financial fraud detection. Journal of Risk and Financial Management, 18(4), 179. Retrieved from https://doi.org/10.33 90/jrfm18040179
  6. Anang, A., Nwafor, K., Akinbi, I., Ajewumi, O., Sonubi, T. & Arogundade, J. (2024). Explainable AI in financial technologies: Balancing innovation with regulatory compliance. International Journal of Science and Research Archive, 13(1), 1793–1806. Retrieved from https://doi.org/10.30574/ijsra.2024.13.1.1870
  7. Arras, L., Samek, W., Müller, K.-R. & Montavon, G. (2017, January 1). Explaining recurrent neural network predictions in sentiment analysis. Retrieved from https://doi.org/10.186 53/v1/w17-5221
  8. Benhamou, E., Guez, B., Saltiel, D. & Ohana, J.-J. (2021). Explainable AI (XAI) models applied to planning in financial markets. Retrieved from https://doi.org/10.2139/ssrn.386 2437
  9. Burkhart, R. J., Hecht, C. J., Karimi, A. H., Acuña, A. J. & Kamath, A. F. (2023). What are the trends in research publication misrepresentation among orthopaedic residency and fellowship applicants from 1996 to 2019? A systematic review. Clinical Orthopaedics and Related Research, 481(7), 1292–1303. Retrieved from https://doi.org/10.1097/corr.0000000000002549
  10. Černevičienė, J. & Kabašinskas, A. (2024). Explainable artificial intelligence (XAI) in finance: A systematic literature review. Artificial Intelligence Review, 57(8). Retrieved from https://doi.org/10.1007/s10462-024-10854-8
  11. Chakkappan, G., Morshed, A. & Rashid, M. M. (2024). Explainable AI and big data analytics for data security risk and privacy issues in the financial industry. Retrieved from https://doi.org/10.1109/icei64305.2024.10912422
  12. Chaudhari, A. & Charate, P. (2025). Concept-based explainable AI: Interpreting deep learning models through human-readable concepts in financial applications. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 11(2), 3780–3795. Retrieved from https://doi.org/10.32628/cseit25112858
  13. Chinnaraju, A. (2025). Explainable AI (XAI) for trustworthy and transparent decision-making: A theoretical framework for AI interpretability. World Journal of Advanced Engineering Technology and Sciences, 14(3), 170–207. Retrieved from https://doi.org/10.3 0574/wjaets.2025.14.3.0106
  14. Deck, L., De-Arteaga, M., Schoeffer, J. & Kühl, N. (2024). A critical survey on fairness benefits of explainable AI. Retrieved from https://doi.org/10.1145/3630106.3658990
  15. Devi, P., Naruka, M. S., Desai, S. S., Kumar, R. & Tripathi, V. (2024). A strategic innovation for stock market optimization by using data science & explainable AI in high frequency trading. Retrieved from https://doi.org/10.1109/icicnis64247.2024.10823313
  16. Dezao, T. (2024). Enhancing transparency in AI-powered customer engagement. Journal of AI, Robotics Workplace Automation, 3(2), 134. Retrieved from https://doi.org/10.69554/ppje1646
  17. Fior, J., Garza, P. & Cagliero, L. (2022). Leveraging explainable AI to support cryptocurrency investors. Future Internet, 14(9), 251. Retrieved from https://doi.org/10.3390/fi14090251
  18. Gruszczyński, M. (2019). Modeling financial distress and bankruptcy (pp. 77–119). Springer. Retrieved from https://doi.org/10.1007/978-3-030-34219-7_3
  19. Gupta, N. (2025). Explainable AI for regulatory compliance in financial and healthcare sectors: A comprehensive review. International Journal of Advances in Engineering and Management, 7(3), 489–494. Retrieved from https://doi.org/10.35629/5252-0703489494
  20. Harit, A., Sun, Z., Yu, J. & Moubayed, N. (2024). Breaking down financial news impact: A novel AI approach with geometric hypergraphs. Retrieved from https://doi.org/10.48550/arxiv.2409.00438
  21. Islam, M. U., Zobaed, S. M., Hassan, M., Mozaharul M. M., Alam, Z. I. & Rabby, M. F. (2022). The past, present, and prospective future of XAI: A comprehensive review (pp. 1–29). Springer. Retrieved from https://doi.org/10.1007/978-3-030-96630-0_1
  22. Jagrič, T., Luetić, D., Herman, A. & Mumel, D. (2025). Detecting potential investors in crypto assets: Insights from machine learning models and explainable AI. Information, 16(4), 269. Retrieved from https://doi.org/10.3390/info16040269
  23. Kim, J., Maathuis, H. & Sent, D. (2024). Human-centered evaluation of explainable AI applications: A systematic review. Frontiers in Artificial Intelligence, 7. Retrieved from https://doi.org/10.3389/frai.2024.1456486
  24. Kuznietsov, A., Wang, C., Peters, S., Gyevnar, B. & Albrecht, S. V. (2024). Explainable AI for safe and trustworthy autonomous driving: A systematic review. IEEE Transactions on Intelligent Transportation Systems, 25(12), 19342–19364. Retrieved from https://doi.org/10.1109/tits.2024.3474469
  25. Liu, S., Fu, H., Yalcin, M. & Fan, X. (2021). An investigation of the impact of COVID-19 non-pharmaceutical interventions and economic support policies on foreign exchange markets with explainable AI techniques. Retrieved from https://doi.org/10.48550/arxiv.2111.14620
  26. Liu, Y. & Zhang, L. (2022). Cryptocurrency valuation: An explainable AI approach. Retrieved from https://doi.org/10.48550/arxiv.2201.12893
  27. Madabhushini, I. (2025). Explainable AI (XAI) in business intelligence: Enhancing trust and transparency in enterprise analytics. The American Journal of Engineering and Technology, 7(8), 9–20. Retrieved from https://doi.org/10.37547/tajet/volume07issue08-02
  28. Malali, N. & Madugula, S. R. P. (2025). Implementing explainable AI for proactive regulatory compliance and auditing in financial markets. Retrieved from https://doi.org/10.1109/netcrypt65877.2025.11102636
  29. Malwade, S. S. & Budhavale, S. J. (2023). Exploring explainable AI: Current trends, challenges, techniques and its applications. Retrieved from https://doi.org/10.1145/3647444.3647912
  30. Marey, A., Arjmand, P., Alerab, A. D. S., Eslami, M. J., Saad, A. M., Sanchez, N. & Umair, M. (2024). Explainability, transparency and black box challenges of AI in radiology: Impact on patient care in cardiovascular radiology. Egyptian Journal of Radiology and Nuclear Medicine, 55(1). Retrieved from https://doi.org/10.1186/s43055-024-01356-2
  31. Modastoni, D. A. (2023). Exploring methods to make AI decisions more transparent and understandable for humans. Advances in Engineering Innovation, 3(1). Retrieved from https://doi.org/10.54254/2977-3903/3/2023037
  32. Mohseni, S., Zarei, N. & Ragan, E. D. (2021). A multidisciplinary survey and framework for design and evaluation of explainable AI systems. ACM Transactions on Interactive Intelligent Systems, 11(3–4), 1–45. Retrieved from https://doi.org/10.1145/3387166
  33. Mohsin, M. & Nasim, N. (2025). Explaining the unexplainable: A systematic review of explainable AI in finance. Retrieved from https://doi.org/10.48550/arxiv.2503.05966
  34. Morato De Andrade, O. & Alves, M. A. S. (2024). Using explainable artificial intelligence (XAI) to reduce opacity and address bias in algorithmic models. Revista Thesis Juris, 13(1), 03–25. Retrieved from https://doi.org/10.5585/13.2024.26510
  35. Morris, M. X., Asaad, M., Rajesh, A., Song, E. Y. & Phillips, B. T. (2022). Ethical, legal, and financial considerations of artificial intelligence in surgery. The American Surgeon, 89(1), 55–60. Retrieved from https://doi.org/10.1177/00031348221117042
  36. Njagi, P., Groot, W., Arsenijevic, J., Mburu, G., Chambers, G., Calhaz-Jorge, C. & Kiarie, J. (2025). Financial cost of assisted reproductive technology for patients in high-income countries: A systematic review protocol. PloS One, 20(2), e0318780. Retrieved from https://doi.org/10.1371/journal.pone.0318780
  37. Nussbaumer-Streit, B., Sommer, I., Hamel, C., Devane, D., Noel-Storr, A., Puljak, L., Trivella, M. & Gartlehner, G. (2023). Rapid reviews methods series: Guidance on team considerations, study selection, data extraction and risk of bias assessment. BMJ Evidence-Based Medicine, 28(6), 418–423. Retrieved from https://doi.org/10.1136/bmjebm-2022-112185
  38. Ogundimu, O. (2025). Artificial intelligence in financial markets: Enhancing risk assessment and decision-making in stock brokering and banking. Cognizance Journal of Multidisciplinary Studies, 5(6), 239–263.
  39. Ohana, J. J., Ohana, S., Saltiel, D., Guez, B. & Benhamou, E. (2021). Explainable AI (XAI) models applied to the multi-agent environment of financial markets (pp. 189–207). Springer. Retrieved from https://doi.org/10.1007/978-3-030-82017-6_12
  40. Owolabi, O. S., Uche, P. C., Islam, R. B., Ihejirika, C., Adeniken, N. T. & Chhetri, B. J. T. (2024). Ethical implication of artificial intelligence (AI) adoption in financial decision making. Computer and Information Science, 17(1), 49. Retrieved from https://doi.org/10.5 539/cis.v17n1p49
  41. Pan, H., Kwak, Y. & Deal, B. (2022). Participatory development of planning support systems to improve empowerment and localization. Journal of Urban Technology, 33–54. Retrieved from https://doi.org/10.1080/10630732.2022.2031431
  42. Patidar, N., Mishra, S., Jain, R., Prajapati, D., Solanki, A., Suthar, R., Patel, K. & Patel, H. (2024). Transparency in AI decision making: A survey of explainable AI methods and applications. Advances in Robotic Technology, 2(1), 1–10. Retrieved from https://doi.org/10.23880/art-16000110
  43. Rane, J., Rane, N. L., Mallick, S. K. & Kaya, Ö. (2024). Enhancing black-box models: Advances in explainable artificial intelligence for ethical decision-making. Deep Science. Retrieved from https://doi.org/10.70593/978-81-981271-0-5_4
  44. Saarela, M. & Podgorelec, V. (2024). Recent applications of explainable AI (XAI): A systematic literature review. Applied Sciences, 14(19), 8884. Retrieved from https://doi.org/10.3390/app14198884
  45. Salih, A., Boscolo Galazzo, I., Gkontra, P., Rauseo, E., Mark Lee, A., Lekadir, K., Radeva, P., Petersen, S. & Menegaz, G. (2023). A review of evaluation approaches for explainable AI with applications in cardiology. Institute of Electrical Electronics Engineers. Retrieved from https://doi.org/10.36227/techrxiv.24573304
  46. Saxena, A., Shakya, H. K., Kumar, G., Benedetto, F., Santhanavijayan, A. & Balusamy, B. (2024). Nested sentiment analysis for ESG impact: Leveraging FinBERT to predict market dynamics based on eco-friendly and non-eco-friendly product perceptions with explainable AI. Mathematics, 12(21), 3332. Retrieved from https://doi.org/10.3390/math12213332
  47. Sepahdar, A., Selahbarzin, B., Naini, A. V., Jafari, S., Moradi, M. & Shakib, P. (2024). The effect of green-synthesized nanoparticles on dental caries-causing bacteria: A systematic review. Recent Patents on Biotechnology, 19. Retrieved from https://doi.org/10.2174/0118722083343723241204053839
  48. Srivastava, K., Chotaliya, V., Sorathiya, A. & Mehta, J. (2024). Enhancing interpretability, reliability and trustworthiness: Applications of explainable artificial intelligence in medical imaging, financial markets and sentiment analysis. Retrieved from https://doi.org/10.1109/ecai61503.2024.10607516
  49. Tanveer, H. & Latif, S. (2024). Decoding stock market predictions: Insights from explainable AI using layer-wise relevance propagation. Retrieved from https://doi.org/10.1109/inmic64792.2024.11004356
  50. Xue, X., Song, Q., Yang, X., Kuati, A., Fu, H. & Cui, G. (2024). Effect of extracorporeal shock wave therapy for rotator cuff injury: Protocol for a systematic review and meta-analysis. PloS One, 19(5), e0301820. Retrieved from https://doi.org/10.1371/journal.pone.0301820
Abstract Views: 1
PDF Views: 5

Advanced Search

News/Events

Dr. Moonje Institute...

C.H.M.E. Society's Dr. Moonje Institute of Management and Computer...

Book Title: Convergi...

Title: Converging Horizons in Construction and the Bu...

Update: Reviewer Nam...

Dear Reviewer, Greetings!! We are pleased to inform you that your ...

💐Heartiest Congra...

JPI team extends its heartiest Congratulations to Prof. (Dr.) Thipendr...

Ramachandran Interna...

Ramachandran International Institute of Management (RIIM), Pune Org...

PCETs Pimpri Chinchw...

PCET's Pimpri Chinchwad College of Engineering and Research Org...

Institute of Managem...

Institute of Management Technology, Nagpur Organizing International...

GENDER CULTURES: Mul...

IIULM University, Milan, Italy Organizing GENDER CULTURES: Mul...

Dept. of MBA, Karnat...

Department of MBA, KLS, Gogte Institute of Technology, Belagavi Org...

Indira School of Bus...

Indira School of Mangement Studies PGDM, Pune Organizing Internatio...

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.