Journal Press India®

Performance evaluation of Vapour Compression Refrigeration system using eco friendly refrigerants in primary circuit and nanofluid (Water-nano particles based) in secondary circuit

Vol 2 , Issue 2 , April - June 2014 | Pages: 167-184 | Research Paper  

https://doi.org/10.51976/ijari.221424

| | |


Author Details ( * ) denotes Corresponding author

1. * R. K. Misra, Department of Mechanical & Production Engineering, Delhi Technological University, New Delhi, Delhi, India (professor-rsmishra@yahoo.co.in)

This paper describes thermal modeling of Vapor Compression Refrigeration System using R134a in primary circuit and AL2O3-Water based nanofluids in secondary circuit. The model uses information of the secondary fluids input conditions geometric characteristics of the system, size of nanoparticles and the compressor speed to predict the secondary fluids output temperatures, the operating pressures, the compressor power consumption and the system overall energy performance. Such an analysis can be conveniently useful to compare the thermal performance of different nano particles (Cu, Al2o3, Tio2 and CuO) based nano fluid as a secondary fluid in a Vapor Compression Refrigeration System. The influence of input variables on the output of the system is presented. Such a model can also be used to design various Components viz. Evaporator, Compressor, Condenser and Throttle Valve for Vapor Compression Refrigeration Systems for any desired cooling capacity. The use of nanofluids as a secondary fluid in vapour compression refrigeration systems was studied and computational simulation program was developed to solve the non linear equations of the system model. Simulation results have shown that for the same geometric characteristics of the system performance increased from 17% to 20% by application of nanofluid as a secondary fluid in VCS.

Keywords

Sustainable Technologies; Sustainable Development; Green Technologies; Alternative Refrigerants; Eco Friendly Refrigerants; Energy Exergy Analysis; Irreversibility Analysis


  1. Johnson. E. Global warming from HFC. Environ. Impact Asses.1998; 18 485-492.

  2. Qiyu Chen, R.C Prasad. Simulation of a vapour compression refrigeration cycles HFC134A and CFC12.Int Comm.Heat Mass Transfer.1999; 26 513-521.

  3. M. Padilla, R. Revellin, J. Bonjour. Exergy analysis of R413A as replacement of R12 in a domestic refrigeration system. Int J Energy Conversion and Management.2010; 51 2195-2201.

  4. H.O. Spauschus. HFC 134a as a substitute refrigerant for CFC 12. Int J of Refrigeration. 1988; 11 389-392.

  5. J. U. Ahamed, R. Saidur, H. H. Masjuki, A review on exergy analysis of vapor compression refrigeration system. Int J Renewable and sustainable energy reviews.2011; 15 1593-1600.

  6. R. Llopis, E. Torrella, R. Cabello, D. Sánchez. Performance evaluation of R404A and R507A refrigerant mixtures in an experimental double-stage of vapour compression plant. Int J Applied Energy.2010; 87 1546-1553.

  7. Akhilesh Arora, S. C. Kaushik. Theoretical analysis of a vapour compression refrigeration system with R502, R404A and R507A. Int J Refrigeration.2008; 31 998-1005.

  8. V. Havelsky. Investigation of refrigerating system with R12 refrigerant replacements .Int J Applied Thermal Engineering.2000; 20 133-140.

  9. V. Siva Reddy, N. L Panwar, S. C Kaushik-Exergy analysis of a vapour compression refrigeration system with R134a,R143a,R152a,R404A,R407C,R410A, R502 and R507A.Clean Techn Environ Policy.2012;14 47-53.

  10. R. Saravanakumar, V. Selladurai-Exergy analysis of a domestic refrigerator using eco-friendly R290/R600a refrigerant mixture as an alternative to R134a.Int J Therm Anal Calorim.2013

  11. C. Nikolaidis, D. Probert-Exergy method analysis of a two-stage vapour-compression refrigeration-plants performance. Int J Applied Thermal Engineering.1998; 60 241-256.

  12. S. Kumar, M. Prevost, R. Bugarel- Exergy analysis of a vapour compression refrigeration system. Heat Recovery Systems & CHP.1989; 9 151-157.

  13. Mahmood Mastani Joybari, Mohammad Sadegh Hatamipour, Amir Rahimi, Fatemeh Ghadiri Modarres- Exergy analysis and optimization of R600a as a replacement of R134a in a domestic refrigerator system. International Journal of refrigeration.2013; 36 1233-1242.

  14. S. Anand, S. K Tyagi-Exergy analysis and experimental study of a vapour compression refrigeration cycle.Int J Therm Anal Calorim.2012; 110 961-971.

  15. J. U Ahamed, R. saidur, H. H Masjuki, M. A Sattar- An analysis of energy, exergy and sustainable development of a vapour compression refrigeration system using hydrocarbon.International journal of Green energy.2012; 9 707-717.

  16. Camelia Stanciu, Adina Gheorghian, Dorin Stanciu, Alexandru Dobrovicescu- Exergy analysis and refrigerant effect on the operation and performance lomits of a one stage vapour compression refrigeration system.Termotehnica.2011;1 36-42.

  17. J. U. Ahamed, R. Saidur, H. H. Masjuki. A review on exergy analysis of vapor compression refrigeration system. Int J Renewable and sustainable energy reviews.2011; 15 1593-1600.

  18. B. O. Bolaji, M. A. Akintunde, T. O. Falade. Comparative analysis of performance of three ozone-friends HFC refrigerants in a vapor compression refrigerator. Int J Sustainable Energy & Environment.2011; 2 61-64.

  19. Recep Yumrutas, Mehmet Kunduz, Mehmet Kanoglu-Exergy analysis of vapor compression refrigeration systems. Exergy, An International Journal.2002; 2 266-272.

  20. M. Padilla, R. Revellin, J. Bonjour. Exergy analysis of R413A as replacement of R12 in a domestic refrigeration system. Int J Energy Conversion and Management.2010; 51 2195-2201.

  21. H. M Getu, P. K Bansal. Thermodynamic analysis of an R744-R717 cascade refrigeration system. Int J Refrigeration.2008; 31 45-54.

  22. Mark W. Spatz, Samuel F. Yana Motta. An evaluation of options for replacing HCFC-22 in medium temperature refrigeration systems. Int J Refrigeration.2004; 27 475-483.

  23. M. Mohanraj, S. Jayaraj, C. Muraleedharan, P. Chandrasekar.Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator. Int J Thermal Sciences.2009; 48 1036-1042.

  24. X. H. Han, Q. Wang, Z.W. Zhu, G.M. Chen. Cycle performance study on R32/R125/R161 as an alternative refrigerant to R407C. Int J Applied Thermal Engineering.2007; 27 2559-2565.

  25. E. Halimic, D. Ross, B. Agnew, A. Anderson, I. Potts. A comparison of the operating performance of alternative refrigerants. Int J Applied Thermal Engineering.2003; 23 1441-1451.

  26. Yongmei Xuan, Guangming Chen. Experimental study on HFC-161 mixture as an alternative refrigerant to R502. Int J Refrigeration. Article in Press.

  27. R. Cabello, J. Navarro-Esbrı, R. Llopis, E. Torrella. Analyses of the variation mechanism in the main energetic parameters in a single-stage vapour compression plant. Int J Applied Thermal Engineering.2007; 27 167-176.

  28. R. Cabello, E. Torrella, J. Navarro-Esbr. Experimental evaluation of a vapour compression plant performance using R134a, R407C and R22 as working fluids. Int J Applied Thermal Engineering.2004; 24 1905-1917.

  29. Klein, S. A., AlvaradoF. Engineering Equation Solver, Version 7.441. F Chart Software, Middleton, WI.2005.

  30. Dincer. I. Refrigeration Systems and Applications. Wiley, UK.2003 26.

  31. Elcock D. Potential impacts of nanotechnology on energy transmission applications and needs. Environmental Science Division, Argonne National Laboratory; 2007.

  32. Hindawi, Special issue on heat transfer in nanofluids; 2009

  33. Eastman JA, Choi US, Thompson LJ, Lee S. Enhanced thermal conductivity through the development of nanofluids. Mater Res Soc Symp Proc 1996;457 3–11.

  34. Liu MS, Lin MCC, Huang IT, Wang CC. Enhancement of thermal conductivity with CuO for Nanofluids. Chemical Engineering and Technology 2006; 29(1) 72–7.

  35. Jiang W, Ding G, Peng H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. International Journal of Thermal Sciences 2009;48 1108–15

  36. Hwang YJ, Ahn YC, Shin HS, Lee CG, Kim GT, Park HS, et al. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Current Applied Physics 2006; 6(6) 1068–71.

  37. Yoo D-H, Hong KS, Yang H-S. Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochimica Acta 2007; 455(1–2) 66–9.

  38. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters 2001; 79(14) 2252–4.

  39. Yang Y. Carbon nanofluids for lubricant application. University of Kentucky; 2006.

  40. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters 2001; 78(6) 718–20.

  41. Yang Y. Carbon nanofluids for lubricant application. University of Kentucky;2006

  42. Kang HU, Kim SH, Oh JM. Estimation of thermal conductivity of nanofluid using experimental effective particle. Experimental Heat Transfer 2006; 19(3) 181–91.

  43. Lee J-H, Hwang KS, Jang SP, Lee BH, Kim JH, Choi SUS, et al. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. International Journal of Heat and Mass Transfer 2008; 51(11–12) 2651–6.

  44. Jiang W, Ding G, Peng H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. International Journal of Thermal Sciences 2009; 48 1108–15.

  45. Wu XM, Li P, Li H, Wang WC. Investigation of pool boiling heat transfer of R11 with TiO2 nano-particles. Journal of Engineering Thermophysics 2008; 29(1) 124–6.

  46. Trisaksri V, Wongwises S. Nucleate pool boiling heat transfer of TiO2–R141b nanofluids. International Journal of Heat and Mass Transfer 2009; 52(5–6) 1582–8.

  47. Hao P, Guoliang D, Weiting J, Haitao H, Yifeng G. Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. International Journal of Refrigeration 2009; 32 1259–70.

  48. Hao P, Guoliang D, Haitao H, Weiting J, Dawei Z, Kaijiang W. Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles. International Journal of refrigeration 2010; 33 347–58.

  49. Wang KJ, Ding GL, Jiang WT. Nano-scale thermal transporting and its use in engineering. In Proceedings of the 4th symposium on refrigeration and air condition; 2006, 66–75.

  50. Li P, Wu XM, Li H. Pool boiling heat transfer experiments of refrigerants with nanoparticle TiO2. In Proceedings of the 12th symposium on engineering thermophysics; 2006, 325–8.

  51. Peng H, Ding G, Jiang W, Hu H, Gao Y. Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube.International Journal of Refrigeration; 2009;32 1259–70.

  52. D.Sendil Kumar, R. Elansezhian.Zno nanorefrigerant in R152a refrigeration system for energy conservation and green environment.J Front Mech Engg ; 2014;1-6.

  53. I. M. Mahbubul, S. A. Fadhilah, R. Saidur, K. Y. Leong, M. A. Amalina, Thermophysical properties and heat transfer performance of Al2O3/R-134a nanorefrigerants.International Journal of Heat and Mass Transfer ;2013;57 100–108s.

Abstract Views: 1
PDF Views: 103

Advanced Search

News/Events

Indira School of Bus...

Indira School of Mangement Studies PGDM, Pune Organizing Internatio...

Indira Institute of ...

Indira Institute of Management, Pune Organizing International Confe...

D. Y. Patil Internat...

D. Y. Patil International University, Akurdi-Pune Organizing Nation...

ISBM College of Engi...

ISBM College of Engineering, Pune Organizing International Conferen...

Periyar Maniammai In...

Department of Commerce Periyar Maniammai Institute of Science &...

Institute of Managem...

Vivekanand Education Society's Institute of Management Studies ...

Institute of Managem...

Deccan Education Society Institute of Management Development and Re...

S.B. Patil Institute...

Pimpri Chinchwad Education Trust's S.B. Patil Institute of Mana...

D. Y. Patil IMCAM, A...

D. Y. Patil Institute of Master of Computer Applications & Managem...

Vignana Jyothi Insti...

Vignana Jyothi Institute of Management International Conference on ...

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.