Journal Press India®

Biological Waste Gas Treatment using Membrane Based Technology

Vol 4 , Issue 1 , January - March 2016 | Pages: 63-76 | Research Paper  

https://doi.org/10.51976/ijari.411610

| | |


Author Details ( * ) denotes Corresponding author

1. * Gaurav Pandey, Department of Civil Engineering, Uttaranchal University, Dehradun, Uttrakhand, India (environgineer@gmail.com)
2. Abhishek Gupta, Department of Civil Engineering, Uttaranchal University, Dehradun, Uttrakhand, India

This article presents a literature review on developments of membrane reactors for biological waste gas treatment as well as examples of applications to different compounds. The use of membranes combines selective separation of compounds from a waste gas stream followed by biological removal. Gas transport phenomena and different types of membranes used in biological waste gas treatment are discussed. So far, membrane-based biological waste gas treatment has only been tested on laboratory scale. If the long-term stability of these reactors can be demonstrated, membrane bioreactor technology can be useful in the treatment of gas streams containing poorly water-soluble pollutants and highly chlorinated hydrocarbons, which are difficult to treat with conventional methods for biological waste gas treatment.

Keywords

Waste Gases; Membrane Bioreactors; Biological Treatment; Biofilm.


  1. G. Crawford, A. Fernandez, A. Shawwa, G. Daigger, Competitive binding and evaluation of membrane bioreactor equipment—three large case studies, in: Proceeding of WEF 75th Annual Conference and Exposition, Chicago, IL, 2002.

  2. I. De Bo, H.Van Langenhove, J.Heyman, Removal of dimethyl sulfide from waste air in a membrane bioreactor, Desalination 148 (2002) 281–287.

  3. S.J. Ergas, L. Shumway, M.W. Fitch, J.J. Neemann, Membrane process for biological treatment of contaminated gas streams, Biotechnol. Bioeng. 63 (1999) 431–441.

  4. H. Van Langenhove, I. De Bo, P. Jacobs, K. Demeestere, J. Dewulf, A membrane bioreactor for the removal of dimethyl sulphide and toluene from waste air, Water Sci. Technol. 50 (2004) 215–224.

  5. M.W. Reij, J.T.F.Keurentjes, S. Hartmans, Membrane bioreactors forwaste gas treatment, J. Biotechnol. 59 (1998) 155–167.

  6. M.W. Reij, K.D. de Gooijer, J.A.M. de Bont, S. Hartmans, Membrane bioreactor with a porous hydrophobic membrane as a gas–liquid contactor for waste gas treatment, Biotechnol. Bioeng. 45 (1995) 107–115.

  7. S.J. Ergas, Membrane bioreactors, in: C.Kennes, M.C.Veiga (Eds.), Bioreactors forWaste Gas Treatment, Kluwer Academic Publishers, Dordrecht, 2001.

  8. M.H.V. Mulder, Basic Principles of Membrane Technology, 2nd ed., Kluwer Academic Publishers, Dordrecht, 1996.

  9. Z. Lewandowski, Dissolved oxygen gradients near microbially colonized surfaces, in: G.G. Geesey, Z. Lewandowski, H.C. Flemming (Eds.), Biofouling and Biocorrosion in IndustrialWater System, Lewis Publisher, FL, 1994, pp. 175–188.

  10. W.S.H. Ho, K.K. Sirkar (Eds.), Membrane Handbook, Van Nostrand Reinhold, New York, 1992.

  11. T. Stephenson, S. Judd, B. Jefferson, K. Brindle, Membrane Bioreactors for Wastewater Treatment, IWA Publishing, London, 2000.

  12. S.J. Ergas, A. Reuss, Hydrogenotrophic denitrification of drinking water using hollow fiber membrane bioreactor, J. Water Supply: Res. Technol. Aqua. 50 (2001) 161–171.

  13. M.J. Semmens, J.S. Gulliver, A. Anderson, An analysis of bubble formation using microporous hollowfiber membranes,Water Environ. Res. 71 (1999) 307–315.

  14. J. Karger, D.M. Ruthven, Diffusion in Zeolites and Other Microporous Solids, John Wiley & Sons Inc., New York, 1992.

  15. H. Attaway, C.H. Gooding, M.G. Schmidt, Compression of micro porous and nonporous membrane bioreactor system for the treatment of BTEX in vapor stream, J. Ind. Microbiol. Biotechnol. 28 (2002) 245–251.

  16. W.J.Koros, G.K. Fleming, Membrane-based gas separation, J. Membr. Sci. 83 (1993) 1–80.

  17. S.A. Stern, Polymers for gas separation: the next decade, J. Membr. Sci. 94 (1994) 1–65.

  18. B. Freeman, I. Pinnau, Separation of gases using solubility-selective polymers, Trends Polym. Sci. 5 (1997) 167–173.

  19. R.E. Kesting, A.K. Fritzsche, Polymers for Gas Separation Membranes, John Wiley & Sons Inc., New York, 1993.

  20. M. Fitch, S. Sauer, B. Zhang, Membrane biofilters: materials choices and diurnal loading effects, in: Proceedings of USC-TRG Conference on Biofiltration, University of Southern California, October 19–20, 2000, p. 89.

  21. P. Cote, J.L. Bersillion, A. Huyard, Bubble-free aeration using membranes: mass transfer analysis, J. Membr. Sci. 47 (1989) 91–106.

  22. P. Cote, J.L. Bersillion, A. Huyard, Bubble free aeration using membranes: process analysis, J. Water Pollut. Contr. Fed. 60 (1988) 1986–1992.

  23. P. Jacobs, I. De Bo, K. Demeestere, W. Verstraete, H. Van Langenhove, Toluene removal from waste air using a flat composite membrane bioreactors, Biotechnol. Bioeng. 85 (2004) 68–77.

  24. I. De Bo, H. Van Langenhove, P. Pruuost, J. De Neve, J. Pieters, I.F.J. Vankelecom, E. Dick, Investigation of the permeability and selectivity of gases and volatile organic compounds for polydimethylsiloxane membrane, J. Membr. Sci. 215 (2003) 303–319.

  25. I. De Bo, H. Van Langenhove, J. De Keijser, Application of vapour phase calibration method for determination of sorption of gases and VOC in polydimethylsiloxane membranes, J. Membr. Sci. 209 (2002) 39–52.

  26. P.J. Hickey, C.H. Gooding, Mass transfer in spiral wound pervaporation modules, J. Membr. Sci. 92 (1994) 52–74.

  27. C.M. Bell, F.J. Gerner, H. Strathmann, Selection of polymers for pervaporation membranes, J. Membr. Sci. 36 (1998) 315–329.

  28. J.E. Amoore, E. Hautala, Odor as an aid to chemical safety: odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution, J. Appl. Toxicol. 3 (1983) 272–290.

  29. J. Dewulf, D. Drijvers, H. Van Langenhove, Measurement of Henry’s law constant as function of temperature and salinity for the low temperature range, Atmos. Environ. 29 (1995) 323–331.

  30. R. Singh, D. Paul, R.K. Jain, Biofilms: implications in bioremediation, Trends Microbiol. 14 (2006) 389–397.

  31. J. Wimpenny, W. Manz, U. Szewzyk, Heterogeneity in biofilms, FEMS Microbiol. Rev. 24 (2000) 661–671

  32. Y. Aoi, In situ identification of microorganisms in biofilm communities, J. Biosci. Bioeng. 94 (2002) 552–556.

  33. C.R. Woese, G.E. Fox, Phylogenetic structure of prokaryotic domainprimary kingdoms, Proc. Natl. Acad. Sci. U.S.A. 74 (1997) 5088–5099.

  34. T. Ito, J.L. Nielsen, S. Okabe, Y. Watanabe, P.H. Nielsen, Phylogenetic identification and structure uptake patterns of sulfate reducing bacteria inhabiting an oxic–anoxic sewer biofilm determined by combining microautoradiography and fluorescence in situ hybridization, Appl. Environ. Microbiol. 68 (2002) 356–364.

  35. M. Chalfie, Y. Tu, G. Euskircheng, W.W. Ward, D.C. Prasher, Green fluorescent protein as a marker for gene expression, Science 263 (1994) 802–805.

  36. K. Tani, K. Kurokawa, M. Nasu, Development of a direct in situ PCR method for detection of specific bacteria in natural environments, Appl. Environ. Microbiol. 64 (1998) 1536–1540.

  37. S. Moller, A.R. Pedersen, L.K. Poulsen, E. Arvin, S. Molin, Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy, Appl. Environ. Microbiol. 62 (1996) 4632–4640.

  38. H.C. Fleming, Sorption sites in biofilms, Water Sci. Technol. 32 (1995) 27–33.

  39. J.B. Xavier, C. Picioreanu, M.C.M. van Loosdercht, A modelling study of the activity and structure of biofilms in biological reactors, Biofilms 1 (2004) 1–15.

  40. L. Tijhuis, B. Hijman, M.C.M. van Loosdrecht, J.J. Heijnen, Influence of detachment, substrate loading and reactor scale on the formation of biofilms in airlift reactors, Appl. Microbiol. Biotechnol. 45 (1996) 7–17.

  41. Z. Lewandowski, Notes on biofilm porosity, Water Res. 34 (2000) 2620–2624.

  42. S. Wasche, H. Horn, D.C. Hempel, Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface,Water Res. 36 (2002) 4775–4784.

  43. L.M. Freitas dos Santos, P. Pavasant, L.F. Strachan, E.N. Pistikopoulos, A.G. Livingston, Membrane attached biofilms for waste treatment—fundamentals and applications, Pure Appl. Chem. 69 (1997) 2459–2469.

  44. P. Pavasant, L.M. Freitas dos Santos, E.N. Pistikopoulos, A.G. Livingston, Prediction of optimal biofilm thickness for membrane-attached biofilms growing in an extractive membrane bioreactor, Biotechnol. Bioeng. 52 (1996) 373–386.

  45. B.E. Rittman, M. Pettis, H.W. Reeves, D.A. Stahl, How biofilm clusters affects substrate flux and ecological selection, Water Sci. Technol. 39 (7) (1999) 99–105.

  46. I. Klapper, Effect of heterogeneous structure in mechanically unstressed biofilms on overall growth, Bull. Math. Biol. 66 (2004) 809–824.

  47. H. Horn, E. Morgenroth, Transport of oxygen, sodium chloride, and sodium nitrate in biofilms, Chem. Eng. Sci. 61 (2006) 1347–1356.

  48. C. Staudt, H. Horn, C.D. Hempel, T.R. Neu, Screening of lectins for starting lectin-specific glycoconjugates in the EPS of biofilms, in: V. O’Flaherty, P. Moran, P. Stoodley (Eds.), Biofilms in Industry, Medicine&Environmental Biotechnology, IWA Publishing, London, 2003, pp. 308–327.

  49. M.C.M. van Loosdrecht, J.J. Heijnen, H. Eberl, J. Kreft, C. Picioreanu, Mathematical modelling of biofilm structures, Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 81 (2002) 245–256.

  50. B.D. Wood, S. Whitaker, Diffusion and reaction in biofilms, Chem. Eng. Sci. 53 (1998) 397–425.

  51. J.V. Matson, W.G. Characklis, Diffusion in microbial aggregates, Water Res. 10 (1976) 877–885.

  52. C.C.H. Cronenberg, J.C. van den Heuvel, Determination of glucose diffusion coefficient in biofilm with micro electrodes, Biosens. Bioelectron. 6 (1991) 255–262.

  53. X. Zhu, M.T. Suidan, C. Alonoso, T. Yu, B.J. Kim, B.R. Kim, Biofilm structure and mass transfer in a gas phase trickle-bed biofilter, Water Sci. Technol. 43 (2001) 285–293.

  54. Z. Lewandowski, G. Walser, W. Characklis, Reaction kinetics in biofilms, Biotechnol. Bioeng. 38 (1991) 877–882.

  55. T. Yano, T. Kodama, K. Yamada, Fundamental studies on the aerobic fermentation. Part VIII. Oxygen transfer within a model pellet, Agric. Biol. Chem. 25 (1961) 580–584.

  56. H. Siegrist,W. Gujer, Mass transfer mechanism in a heterotrophic biofilm,Water Res. 19 (1985) 1369–1378.

  57. E.E. Beuling, D. van Dusschoten, P. Lens, J.C. van den Heuvel, H. Van As, S.P.P. Ottengraf, Characterization of the diffusive properties of biofilms using pulsed field gradient nuclear magnetic resonance, Biotechnol. Bioeng. 60 (1998) 283–291.

  58. S.B. Libicki, P.M. Salmon, C.R. Robertson, Effective diffusive permeability of a nonreacting solute in microbial cell aggregates, Biotechnol. Bioeng. 32 (1998) 68–85.

  59. L.S. Fan, R. Leyva-Ramos, K.D. Wisecarver, B.J. Zehner, Diffusion of phenol through a biofilm grown on activated carbon particles in a drafttube three-phase fluidized bed bioreactor, Biotechnol. Bioeng. 35 (1990) 279–286.

  60. R.K. Hinson, W.M. Kocher, Model for effective diffusion in aerobic biofilms, J. Environ. Eng. 122 (1996) 1023–1030.

  61. P.S. Stewart, A review of experimental measurement of effective diffusive permeabilities and effective diffusion coefficients in biofilms, Biotechnol. Bioeng 59 (1998) 261–272.

  62. M.A. Deshusses, H.H.J. Cox, D.W. Miller, The use of CAT scanning to characterize bioreactors for waste air treatment, in: Proceedings of the 91st Annual Meeting and Exhibition of the Air & Waste Manage. Assoc., Air & Waste Manage. Assoc., San Diego, CA, 1998, pp. 1–2.

  63. S. Hartmans, E.J.T.M. Leenen, G.T.H. Voskuilen, Membrane bioreactor with porous hydrophobic membranes for waste gas treatment, in: A.J. Dragt, J. van Ham (Eds.), Biotechniques for Air Pollution Abatement and Odour Control Policies, Elsevier Science Publishers, Amsterdam, 1992.

  64. M.G. Parvatiyar, R. Govind, D.F. Bishop, Biodegradation of toluene in a membrane biofilter, J. Membr. Sci. 115 (1996) 121–127.

  65. M.G. Parvatiyar, R. Govind, D.F. Bishop, Treatment of trichloroethylene in a membrane biofilter, Biotechnol. Bioeng. 50 (1996) 57–64.

  66. J.G. Pressman, G. Georgiou, J.G.E. Speitel, A hollow-fiber membrane bioreactor for the removal of trichloroethylene from the vapor phase, Biotechnol. Bioeng. 68 (2000) 548–556.

  67. A.R. Dolasa, S.J. Ergas, Membrane bioreactor for cometabolism of trichloroethylene air emissions, J. Environ. Eng. 1236 (2000) 969–973.

  68. S.J. Ergas, M.S. McGrath, Membrane bioreactor for control of volatile organic compound emission, J. Environ. Eng. 123 (1997) 593–598

  69. Y. Keskiner, S.J. Ergas, Control of ammonia and NOx emission using a nitrifying membrane bioreactor, in: Proceedings of 94th Annual Meeting and Exhibition of Air and Waste Management Association, Orlando, FL, 2001.

  70. M. Fitch, E. England, B. Zhang, Butanol removal from a contaminated air stream under continuous and diurnal loading conditions, J. Air Waste Manage. Assoc. 52 (2002) 1288–1297.

  71. K. Dong Jim, K. Heonki, Degradation of toluene vapor in a hydrophobic polyethylene hollow fiber membrane bioreactor with Pseudomonas putida, Proc. Biochem. 40 (2005) 2015–2020.

  72. M.W. Reij, S. Hartmans, Propene removal from synthetic waste gas using a hollow fiber membrane bioreactor, Appl. Microbiol. Biotechnol. 45 (1996) 730–736.

  73. R. Sander, Hanery’s law constant, 1997, http://www.science.yorku.ca.

  74. W. Stumm, J.J. Morgan, Aquatic Chemistry, 3rd ed., Wiley Interscience, New York, 1996.

  75. M. Reiser, K. Fischer, K.H. Engesser, Kombination aus Biowascher-und Biomembranverfahren zur reinigung von Abluuft und hydrophilen und hydrofoben Inhaltsstoffen, VDI Berichte 1104 (1994) 103.

  76. U. Bauerle, K. Fisher, K. Bardtke, Biologische abluftreinigung mit hilfe eines neuartigen permeationreaktors, Luft 5 (1986) 223.

  77. L.M. Freitas dos Santos, U. Hommerich, A.G. Livingston, Dichloroethane removal from gas streams by an extractive membrane bioreactor, Biotechnol. Prog. 11 (1995) 194–201.

  78. M. Fitch, J. Neeman, E. England, Mass transfer and benzene removal from air using latex rubber tubing and hollow fiber membrane module, Appl. Biochem. Biotechnol. 104 (2003) 199–214.

  79. E. England, M. Fitch, Heat transfer and toluene removal in benchscale membrane bioreactors, in: Proceedings of the Air and Waste Management Association Conference, MD, United States, June 23–27, 2002.

  80. M.W. Reij, E.K. Hamann, S. Hartmans, Biofiltration of air containing low concentrations of propene using bioreactor, Biotechnol. Prog. 13 (1997) 380–386.

  81. M. Hinz, F. Sattler, T. Gekheke, E. Bock, Entferung von stickstoffmonoxide durch den einsatz von mikroorganism-entwickling eines membrantaschenreaktors, VDI Berichte 1104 (1994) 113.

  82. K.N. Min, S.J. Ergas, J.M. Harrison, Hollow-fiber membrane bioreactor for nitric oxide removal, Environ. Eng. Sci. 19 (2002) 575–583.

  83. H. Attaway, C.H. Gooding, M.G. Schmidt, Biodegradation of BTEX vapour in a silicone membrane bioreactor system, J. Ind. Microb. Biotechnol. 26 (2001) 316–325.

  84. I. De Bo, Membrane biofiltration of single-compound waste gas streams. Ph.D. Thesis, Ghent University, Belgium, 2003

Abstract Views: 1
PDF Views: 105

Advanced Search

News/Events

Indira School of Bus...

Indira School of Mangement Studies PGDM, Pune Organizing Internatio...

Indira Institute of ...

Indira Institute of Management, Pune Organizing International Confe...

D. Y. Patil Internat...

D. Y. Patil International University, Akurdi-Pune Organizing Nation...

ISBM College of Engi...

ISBM College of Engineering, Pune Organizing International Conferen...

Periyar Maniammai In...

Department of Commerce Periyar Maniammai Institute of Science &...

Institute of Managem...

Vivekanand Education Society's Institute of Management Studies ...

Institute of Managem...

Deccan Education Society Institute of Management Development and Re...

S.B. Patil Institute...

Pimpri Chinchwad Education Trust's S.B. Patil Institute of Mana...

D. Y. Patil IMCAM, A...

D. Y. Patil Institute of Master of Computer Applications & Managem...

Vignana Jyothi Insti...

Vignana Jyothi Institute of Management International Conference on ...

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.