Journal Press India®

Discussion on an Overview of Graphene Nanocomposites and Dielectric Elastomers

https://doi.org/10.51976/jfsa.121801

Author Details ( * ) denotes Corresponding author

1. * Rajendra Prasad Verma, PhD Scholar, Department of Mechanical Engineering, United University, Prayagraj, India (rajendraverma62yahoo.com)
2. Sharad Chandra Srivastava, Research Scholar, Mechanical Engineering, Sam Higginbottom University of Agriculture and Sciences, Prayagraj, Uttar Pradesh, India (sharad.ucer@gmail.com)

This article examines the most current advancements in dielectric elastomer actuator technology. The adaptability of these actuators makes them helpful in a wide range of situations. Dielectric elastomers, a kind of electroactive polymer, undergo a transformation when subjected to an electric field. When compared to piezoelectric materials, shape memory alloys, ionic polymer metallic materials, and form memory alloys, EAPs' applicability for the design of a broad range of sensors, actuators, and biomedical equipment is better. Because EAPs are able to preserve their original shape even after being distorted, this is why they are so effective. Since EAPs are light, adaptable, simple to manufacture, economically viable, and compatible with surfaces and geometries of varying complexity, this is the case. Shape-memory alloys and materials with piezoelectric characteristics are also included.

Keywords

Solar Panel; Pulse Width Modulation (PWM); Shoot-through; Voltage Source Inverter (VSI); Boost Derived Hybrid Converters (BDHC)

  1. Sharma K and Shukla M 2014 Three-phase carbon fiber amine functionalized carbon nanotubes epoxy composite: processing, characterisation, and multiscale modeling Journal of Nanomaterials 2014
  2. Yin, G., Yang, Y., Song, F., Renard, C., Dang, Z. M., Shi, C. Y., & Wang, D. (2017). Dielectric elastomer generator with improved energy density and conversion efficiency based on polyurethane composites. ACS applied materials & interfaces, 9(6), 5237-5243.
  3. Bar-Cohen Y 2004 Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges vol 136: SPIE press)
  4. Pelrine R, Kornbluh R, Pei Q and Joseph J 2000 High-speed electrically actuated elastomers with strain greater than 100% Science 287 836-9
  5. Chen, T., Qiu, J., Zhu, K., Li, J., Wang, J., Li, S., & Wang, X. (2015). Achieving high performance electric field induced strain: A rational design of hyperbranched aromatic polyamide functionalized graphene–polyurethane dielectric elastomer composites. The Journal of Physical Chemistry B, 119(12), 4521-4530.
  6. Zhang S, Randall C A and Shrout T R 2003 Electromechanical properties in rhombohedral BiScO3-PbTiO3 single crystals as a function of temperature Japanese journal of applied physics 42 L1152
  7. Park S-E and Shrout T R 1997 Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals Journal of applied physics 82 1804-11
  8. Zhang Q, Li H, Poh M, Xia F, Cheng Z-Y, Xu H and Huang C 2002 An all-organic composite actuator material with a high dielectric constant Nature 419 284-7
  9. Huang C, Zhang Q, DeBotton G and Bhattacharya K 2004 All-organic dielectric-percolative three-component composite materials with high electromechanical response Applied Physics Letters 84 4391-3
  10. Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F and Zhang Q 2006 A dielectric polymer with high electric energy density and fast discharge speed Science 313 334-6
  11. Şimşek B and Uygunoğlu T 2017 A design of experiment application to improve raw materials utilization ratio of polymer concrete composites Journal of Engineering Research 5
  12. Liu, S., Tian, M., Yan, B., Yao, Y., Zhang, L., Nishi, T., & Ning, N. (2015). High performance dielectric elastomers by partially reduced graphene oxide and disruption of hydrogen bonding of polyurethanes. Polymer, 56, 375-384.
  13. Cheng Z-Y, Bharti V, Xu T-B, Xu H, Mai T and Zhang Q 2001 Electrostrictive poly (vinylidene fluoride-trifluoroethylene) copolymers Sensors and Actuators A: Physical 90 138- 47
  14. Chen, T., Zhao, Y., Pan, L., & Lin, M. (2015). Insight into effect of hydrothermal preparation process of nanofillers on dielectric, creep and electromechanical performance of polyurethane dielectric elastomer/reduced graphene oxide composites. Journal of Materials Science: Materials in Electronics, 26(12), 10164-10171.
  15. Dorfmann L and Ogden R W 2017 Nonlinear electroelasticity: material properties, continuum theory and applications Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473 20170311
  16. Sommer-Larsen P, Hooker J C, Kofod G, West K, Benslimane M and Gravesen P 2001 Response of dielectric elastomer actuators. In: Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices: International Society for Optics and Photonics) pp 157-63
  17. Kofod G and Sommer-Larsen P 2005 Silicone dielectric elastomer actuators: Finite-elasticity model of actuation Sensors and Actuators A: Physical 122 273-83
  18. Liang J, Li L, Niu X, Yu Z and Pei Q 2013 Elastomeric polymer light-emitting devices and displays Nature Photonics 7 817
  19. Poulin A, Rosset S and Shea H R 2015 Printing low-voltage dielectric elastomer actuators Applied Physics Letters 107 244104
  20. Cianchetti M, Mattoli V, Mazzolai B, Laschi C and Dario P 2009 A new design methodology of electrostrictive actuators for bio-inspired robotics Sensors and Actuators B: Chemical 142 288-97.
  21. Anderson I A, Gisby T A, McKay T G, O’Brien B M and Calius E P 2012 Multi-functional dielectric elastomer artificial muscles for soft and smart machines Journal of applied physics 112 041101
  22. Wang X-L, Oh I-K, Lu J, Ju J and Lee S 2007 Biomimetic electro-active polymer based on sulfonated poly (styrene-b-ethylene-co-butylene-b-styrene) Materials Letters 61 5117-20
  23. Shankar R, Ghosh T K and Spontak R J 2007 Dielectric elastomers as next-generation polymeric actuators Soft Matter 3 1116-29
  24. Kumar S and Singh R N 2001 The creep response of uni-directional fiber-reinforced ceramic composites: a theoretical study Composites science and technology 61 461-73
  25. Huang C, Zhang Q and Su J 2003 High-dielectric-constant all-polymer percolative composites Applied Physics Letters 82 3502-4
  26. Romasanta, L. J., López-Manchado, M. A., & Verdejo, R. (2015). Increasing the performance of dielectric elastomer actuators: A review from the materials perspective. Progress in Polymer Science, 51, 188-211.
  27. Okabe T, Sekine H, Ishii K, Nishikawa M and Takeda N 2005 Numerical method for failure simulation of unidirectional fiber-reinforced composites with spring element model Composites science and technology 65 921-33
  28. Wang T, Farajollahi M, Choi Y S, Lin I-T, Marshall J E, Thompson N M, Kar-Narayan S, Madden J D and Smoukov S K 2016 Electroactive polymers for sensing Interface focus 6 20160026
  29. Liu, S., Sun, H., Ning, N., Zhang, L., Tian, M., Zhu, W., & Chan, T. W. (2016). Aligned carbon nanotubes stabilized liquid phase exfoliated graphene hybrid and their polyurethane dielectric elastomers. Composites Science and Technology, 125, 30-37.
  30. Chen, T., Pan, L., Lin, M., Wang, B., Liu, L., Li, Y., ... & Zhu, K. (2015). Dielectric, mechanical and electro-stimulus response properties studies of polyurethane dielectric elastomer modified by carbon nanotube-graphene nanosheet hybrid fillers. Polymer Testing, 47, 4-11.
  31. Yu H, Duan S and Sun P 2017 Numerical simulation of combustion progress on dual fuel engines with different turbulence models Journal of Engineering Research 5
  32. Maatki C, Kolsi L, Ghachem K, Alghamdi A, Al-Rashed A and Borjini M N 2017 Numerical analysis of electromagnetic parameters of thermal dominated double diffusive magneto- convection Journal of Engineering Research 5
  33. Romasanta, L. J., Hernández, M., López-Manchado, M. A., & Verdejo, R. (2011). Functionalised graphene sheets as effective high dielectric constant fillers. Nanoscale research letters, 6(1), 1-6.
  34. DeBotton G and Tevet-Deree L 2006 Electroactive polymer composites: analysis and simulation. In: Smart Structures and Materials 2006: Active Materials: Behavior and Mechanics: International Society for Optics and Photonics) p 617024
  35. Lu J, Moon K-S, Kim B-K and Wong C 2007 High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications Polymer 48 1510-6
  36. Wang H, Xiao Y and Qin Q-H 2016 2D hierarchical heat transfer computational model of natural fiber bundle reinforced composite Scientia Iranica. Transaction B, Mechanical Engineering 23 268
  37. Bafekrpour E, Salehi M, Sonbolestan E and Fox B 2014 Effects of micro-structural parameters on mechanical properties of carbon nanotube polymer nanocomposites Scientia Iranica. Transaction B, Mechanical Engineering 21 403
  38. Sadasivuni, K. K., Ponnamma, D., Thomas, S., & Grohens, Y. (2014). Evolution from graphite to graphene elastomer composites. Progress in Polymer Science, 39(4), 749-780.
  39. Kurt A and Koca M 2016 Synthesis, characterization and thermal degradation kinetics of poly (3-acetylcoumarin-7-yl-methacrylate) and its organoclay nanocomposites Journal of Engineering Research 4
  40. Soleymani Shishvan S and Asghari A-H 2017 Effects of particle shape and size distribution on particle size-dependent flow strengthening in metal matrix composites scientiairanica 24 1091-9
  41. Manickam C, Kumar J, Athijayamani A and Diwahar N 2015 Mechanical and wear behaviors of untreated and alkali treated roselle fiber-reinforced vinyl ester composite Journal of Engineering Research 3 1-13
  42. Krakovský I, Romijn T and Posthuma de Boer A 1999 A few remarks on the electrostriction of elastomers Journal of applied physics 85 628-9
  43. Bar-Cohen Y 2001 EAP history, current status, and infrastructure Electroactive polymer (EAP) actuators as artificial muscles 3-44
  44. Vozzi G, Carpi F and Mazzoldi A 2006 Realization of conducting polymer actuators using a controlled volume microsyringe system Smart materials and structures 15 279
  45. Fisher F, Bradshaw R and Brinson L C 2003 Fiber waviness in nanotube-reinforced polymer composites—I: Modulus predictions using effective nanotube properties Composites science and technology 63 1689-703
  46. Bar-Cohen Y, Sherrit S and Lih S-S 2001 Characterization of the electromechanical properties of EAP materials. In: Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices: International Society for Optics and Photonics) pp 319-27
  47. Ning, N., Ma, Q., Liu, S., Tian, M., Zhang, L., & Nishi, T. (2015). Tailoring dielectric and actuated properties of elastomer composites by bioinspired poly (dopamine) encapsulated graphene oxide. ACS applied materials & interfaces, 7(20), 10755-10762.
  48. Jo C, Pugal D, Oh I-K, Kim K J and Asaka K 2013 Recent advances in ionic polymer–metal composite actuators and their modeling and applications Progress in Polymer Science 38 1037-66
  49. Bar-Cohen Y 2006 Biomimetic actuators using electroactive polymers (EAP) as artificial muscles/
  50. Yeom S-W and Oh I-K 2009 A biomimetic jellyfish robot based on ionic polymer metal composite actuators Smart materials and structures 18 085002
  51. Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2015). Graphene/elastomer nanocomposites. Carbon, 95, 460-484.
  52. De Luca V, Digiamberardino P, Di Pasquale G, Graziani S, Pollicino A, Umana E and Xibilia M G 2013 Ionic electroactive polymer metal composites: fabricating, modeling, and applications of postsilicon smart devices Journal of Polymer Science Part B: Polymer Physics 51 699-734
  53. Schena B M 2009 Haptic stylus utilizing an electroactive polymer. Google Patents)
Abstract Views: 0
PDF Views: 157

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.