Journal Press India®

Performance Analysis of LNA for IoT Application using Noise Cancellation Technique

https://doi.org/10.51976/jfsa.211907

Author Details ( * ) denotes Corresponding author

1. * Anurag Kumar, Assistant Professor, Department of Computer Science & Engineering, I.E.T,Bundelkhand University, Jhansi, Uttar Pradesh, India (anuragkumarrediff@gmail.com)

Using a noise amplifier cancellation approach, a quantitative and yield test on a low-noise amplifier was completed. A single inductor on a common source line can be used to construct a device with a broad bandwidth, low noise figures (NF), and high-power gain. The suggested low-noise amplifier uses complementary metal-oxide semiconductor technology for the optimum power gain and noise figure.

Keywords

Complementary Metal Oxide Semiconductor (CMOS); Low Noise Amplifier (LNA); Common Source (CS); Common Gate (CG)

  1. N. Yadav, A. Pandey, and V. Nath, "Design of CMOS low noise amplifier for 1.57GHz," 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), Durgapur, 2016, pp. 1-5.
  2. J. Kim and J. Silva-Martinez, "Low-power, low-cost CMOS direct-conversion front-end for multistandard applications," IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2090–2103, Sep. 2013.
  3. M.-T. Lai and H.-W. Tsao, "Ultra-low-power cascaded CMOS LNA with positive feedback and bias optimization," IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 1934–1945, May 2013.
  4. F. Belmas, F. Hameau, and J.-M. Fournier, "A low power inductors LNA with double Gm enhancement in 130 nm CMOS," IEEE J. SolidState Circuits, vol. 47, no. 5, pp. 1094–1103, May 2012.
  5. E. A. Sobhy, A. A. Helmy, S. Hoyos, K. Entesari, E. Sanchez-Silencio, "A 2.8-mW sub-2-dB noise-figure inductor less wideband CMOS LNA employing multiple feedback," IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3154–3161, Dec. 2011.
  6. M. Parvizi, K. Allidina, and M. N. El-Gamal, "An ultra-low-power wideband inductor less CMOS LNA with tunable active shunt-feedback," IEEE Trans. Microw. Theory Techn., vol. 64, no. 6, pp. 1843–1853, Jun. 2016.
  7. F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, "Wide-band CMOS low-noise amplifier exploiting thermal noise canceling," IEEE J. SolidState Circuits, vol. 39, no. 2, pp. 275–282, Feb. 2004.
  8. W.-H. Chen, G. Liu, B. Zdravko, and M. A. Niknejad, "A highly linear broadband CMOS LNA employing noise and distortion cancellation," IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1164–1176, May 2008.
  9. S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, "Wideband balun-LNA with simultaneous output balancing, noise-canceling, and distortion-canceling," IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1341–1350, Jun. 2008.
  10. J. Shim, T. Yang, and J. Jeong, "Design of low power CMOS ultra-wideband low noise amplifier using the noise-canceling technique," Microelectron. J., vol. 44, no. 9, pp. 821–826, Sep. 2013.
  11. K.-H. Chen and S.-I. Liu, "Inductorless wideband CMOS low-noise amplifiers using the noise-canceling technique," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 2, pp. 305–314, Feb. 2012.
  12. H. Wang, L. Zhang, and Z. Yu, "A wideband inductor less LNA with local feedback and noise-canceling for low-power low-voltage applications," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 8, pp. 1993–2005, Aug. 2010.
  13. B. Razavi, "Low-noise amplifier," in RF Microelectronics, 2nd ed. Beijing, China: Publishing House of Electronics Industry, 2012, pp. 263–266.
  14. T. H. Lee, "Noise," in The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. Beijing, China: Publishing House of Electronics Industry, 2012, pp. 259–262.
  15. B. Razavi, "Noise," in Design of Analog CMOS Integrated Circuits. Beijing, China: China Machine Press, 2013, pp. 212–213.
  16. J. Kim, S. Hoyos, and J. Silva-Martinez, "Wideband common-gate CMOS LNA employing dual negative feedback with simultaneous noise, gain, and bandwidth optimization," IEEE Trans. Microw. Theory Techn., vol. 58, no. 9, pp. 2340–2351, Sep. 2010.
  17. J. Kim and J. Silva-Martinez, "Wideband inductor less balun-LNA employing feedback for low-power low-voltage applications," IEEE Trans. Microw. Theory Techn., vol. 60, no. 9, pp. 2833–2842, Sep. 2012.
  18. C. Liao and S. Liu, "A broadband noise-canceling CMOS LNA for 3.1– 10.6-GHz UWB receivers," IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 329–339, Feb. 2007.
  19. J. Y.-C. Liu, J.-S. Chen, C. Hsia, P.-Y. Yin, and C.-W. Lu, "A wideband inductor less single-to-differential LNA in 0.18µm CMOS technology for digital TV receivers," IEEE Microw. Wireless Compon. Lett., vol. 24, no. 7, pp. 472–474, Jul. 2014.
  20. A. L. T. Costa, H. Klimach, and S. Bampi, "A 2-decades wideband low-noise amplifier with high gain and ESD protection," in Proc. 28th Symp. Integer. Circuits Syst. Design (SBCCI), Sep. 2015, pp. 1–6.
  21. S. Arshad, R. Ramzan, K. Muhammad, and Q. Wahab, "A sub-10 mW, noise-canceling, wideband LNA for UWB applications," Int. J. Electron. Commun., vol. 69, pp. 109–118, Sep. 2015.
  22. H.-T. Chou, S.-W. Chen, and H.-K. Chiou, "A low-power wideband dual feedback LNA is exploiting the gate-inductive bandwidth/gain-enhancement technique.
  23. Trung-Kien Nguyen, Chung-Hwan Kim, Gook-Ju Ihm, Moon-Su Yang and Sang-Gug Lee, "CMOS low-noise amplifier design optimization techniques," in IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 5, pp. 1433-1442, May 2004.
  24. Srigayathri V. and M. S. Vasanthi, "Design of Low Noise Amplifier for Multiband receiver," 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, 2016, pp. 1603-1605.
  25. P. K. Dakua, A. S. N. Varma, P. Kabisatpathy and S. Mishra, "Study on design and performance analysis of low noise high-speed amplifier," 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, 2016, pp. 1105-1108.
  26. E. O. Farhat, K. Z. Adami, O. Casha, I. Grech, and J. G. Bij de Vacate, "Design of a wideband CMOS LNA for low-frequency band SKA application," 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Cairo, 2015, pp. 567-571.
  27. P. K. Verma and P. Jain, "A low power high gain low noise amplifier for wireless applications," 2015 Communication, Control and Intelligent Systems (CCIS), Mathura, 2015, pp. 363-367.
  28. Kaamouchi ME, Smoussa M, Delatte P, Wybo G, Bens A, Raskin J-P, Vanhoenker-Janiver D (2007) A 2.4 GHz fully integrated ESD-protected low noise amplifier in 130-nm PD SOI CMOS technology. IEEE Trans Microwave Theory Tech 55:2822–2831.
  29. Fatin GZ, Fatin HZ (2014) A wideband balun LNA. Int J Electron Commun (AEU) 68:653–657.
  30. Hsu MT, Chang YC, Huang YZ (2013) Design of low power UWB LNA based on common source topology with current-reused technique. Microelectron J 44:1223–1230.
  31. Ku KW, Huang CC (2012) A low power CMOS low noise amplifier for wireless communication 19th international conference on Microwaves, radar and wireless communications, May 21–23 Warsaw, Poland
  32. Lin TH, Kaiser WJ, Pottie GJ (2004) Integrated low-power communication system design for wireless sensor networks. IEEE Commun Mag 42:142–150
  33. Nguyen TK, Kim CH, Ihm GJ, Yang MS, Lee SG (2004) CMOS Low-noise amplifier design optimization techniques. IEEE Trans Microw Theory Tech 52:1433–1442.
  34. Rajput SS, Jamuar SS (2002) Low voltage analog circuit design techniques. IEEE Circuits Syst Mag 2:24–42
  35. Rajput SS, Jamuar SS (2002) Low voltage analog circuit design techniques. IEEE Circuits Syst Mag 2:24–42
  36. Tsang TK, El-Gamal MN (2002) Gain and a frequency controllable Sub-IV 5.8 GHz CMOS LNA. ISCAS 4:795–798
  37. Zhuo W, Li X, Shekhar S, Embabi SHK, Pineda de Gyvez J, Allstot DJ, Sanchez-Sinencio E (2005) A capacitor cross-coupled common-gate low-noise amplifier. IEEE Trans Circuits Syst II 52:875–879
  38. Ziabakhsh S, Alavi-Rad H, Yagoub MCE (2012) A high- gain low-power 2-14 GHz ultra-wideband CMOS LNA for wireless receivers. Int J Electron Commun (AEU) 66:727–731.
  39. Zokaei A, Amirabadi A (2014) A 0.13 µm dual-band common-gate LNA using active post distortion for mobile WiMAX. Microelectron J 45:921–929
  40. A. Azizan, S. A. Z. Murad, R. C. Ismail, and M. N. M. Yasin, "A review of LNA topologies for wireless applications," 2014 2nd International Conference on Electronic Design (ICED), Penang, 2014, pp. 320-324.
  41. Zhuo, W., Li, X., Shekhar, S., Embabi, S. H. K., et al. (2005). A capacitor cross-coupled common-gate low-noise amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs52, 875–879.
  42. Li, X., Shekhar, S., Allstot, D. J., et al. (2005). Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μμm CMOS. IEEE Journal of Solid-State Circuits40, 2609–2619.
  43. Samavati, H., Rategh, H. R., & Lee, T. H. (2000). A 5-GHz CMOS wireless LAN receiver front end. IEEE Journal of Solid-State Circuits35, 765–772.
  44. Linten, D., Aspemyr, L., et al. (2004). Low-power 5 GHz LNA and VCO in 90 nm RF CMOS. In IEEE Symposium on VLSI circuits (pp. 372–375).
  45. Karimi, G. R., & Nazari, E. (2010). An ultra-low-voltage amplifier design using forward body bias folded cascade topology for 5 GHz application. In IEEE conference on industrial electronics and applications (pp. 1838–1842).
  46. Chang, C.-P., Chen, J.-H., & Wang, Y.-H. (2009). A fully integrated 5 GHz low-voltage LNA using forward body bias technology. IEEE Microwave and Wireless Components Letters19, 176–178.
  47. Kargaran, E., & Kazemi, M. M. (2010). Design 0.5V, 450μμW CMOS LNA using current reuse and forward body bias technique. In IEEE European conference on circuits and systems for communications (pp. 93–96)
  48. Wu, D., Ru, H., et al. (2007). A 0.4-V low noise amplifier using forward body bias technology for 5 GHz application. IEEE Microwave and Wireless Components Letters43, 543–545.
  49. Lorenzo, M. A. G., & de Leon, M. T. G. (2010). Comparison of LNA topologies for WiMAX applications in a standard 90-nm CMOS process. In IEEE conference on computer modeling and simulation (pp. 642–647).
  50. Hsieh, H.-H., Wang, J.-H., et al. (Aug. 2008). Gain-enhancement techniques for CMOS folded Cascode LNAs at low-voltage operations. IEEE Transactions on Microwave Theory and Techniques56, 1807–1816.
  51. Dehqan, A., Kargaran, E., et al. (2012). Design 0.45V,1.3mW ultra high gain CMOS LNA Using gm-boosting and forward body biasing technique. In IEEE international midwest symposium on circuits and systems (pp. 722–725).
  52. Wang, R.-L., Chen, S.-C., Huang, C.-L., Gao, C.-X., & Lin, Y.-S. (2008). A 0.8V folded-cascade low noise amplifier for multi-band applications. In IEEE Asia pacific on circuits and systems (pp. 1387–1389).
  53. Nguyen, T.-K., Kim, C.-H., et al. (2004). CMOS low-noise amplifier design optimization techniques. IEEE Transactions on Microwave Theory and Techniques52, 1433–1442.
  54. Li, C.-H., Liu, Y.-L., & Kuo, C.-N. (2011). A 0.6-V 0.33-mW 5.5-GHz receiver front-end using resonator coupling technique. IEEE Transactions on Microwave Theory and Techniques59, 1629–1638
  55. Hong, E.-P., Hwang, Y.-S., & Yoo, H.-J. (2007). A low-power folded RF front-end with low flicker noise for direct conversion receiver. In IEEE conference on electron devices and solid-state circuits (pp. 453–456).
  56. Tang T., Mo, T., & Chen, D. (2011). A low-noise amplifier using subthreshold operation for GPS-L1 RF receiver. In IEEE conference on electrical and control engineering (pp. 4257–4260)
  57. Perumana, B. G., Chakraborty, S., et al. (2005). A fully monolithic 260-W, 1-GHz subthreshold low noise amplifier. IEEE Microwave and Wireless Components Letters15, 428–430.
  58. Do, A. V., & Boon, C. C. (2008). A subthreshold low-noise amplifier optimized for ultra-low-power applications in the ISM band. IEEE Transactions on Microwave Theory and Techniques56, PP.-286–292.
  59. Wei, M.-D., Chang, S.-F., et al. (2011). A CMOS fully-differential current-reuse LNA with gm-boosting technique. In European microwave integrated circuits conference (pp. 378–381)
  60. Walling, J. S., Shekhar, S., Allstot, D. J. ( 2007). A gm-boosted current-reuse LNA in 0.18um CMOS. In IEEE radio frequency integrated circuits (RFIC) symposium (pp. 613–616).
Abstract Views: 0
PDF Views: 174

Advanced Search

News/Events

Indira School of Bus...

Indira School of Mangement Studies PGDM, Pune Organizing Internatio...

Indira Institute of ...

Indira Institute of Management, Pune Organizing International Confe...

D. Y. Patil Internat...

D. Y. Patil International University, Akurdi-Pune Organizing Nation...

ISBM College of Engi...

ISBM College of Engineering, Pune Organizing International Conferen...

Periyar Maniammai In...

Department of Commerce Periyar Maniammai Institute of Science &...

Institute of Managem...

Vivekanand Education Society's Institute of Management Studies ...

Institute of Managem...

Deccan Education Society Institute of Management Development and Re...

S.B. Patil Institute...

Pimpri Chinchwad Education Trust's S.B. Patil Institute of Mana...

D. Y. Patil IMCAM, A...

D. Y. Patil Institute of Master of Computer Applications & Managem...

Vignana Jyothi Insti...

Vignana Jyothi Institute of Management International Conference on ...

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.