Journal Press India®

Structural and Viscoelastic Characteristics of Numerous Layered Graphene/Epoxy Nanocomposites

https://doi.org/10.51976/jfsa.221909

Author Details ( * ) denotes Corresponding author

1. * Tarun Sikarwar, Director, DKT Technology Services Pvt. Ltd. , India (tarun.sikarwar@dkt.co.in)
2. Sudhir Kumar Katiyar, Assistant Professor, Department of Mechanical Engineering, Shri Ramswaroop College of Engineering and Management, India (sudhirkatiyar99@gmail.com)

One atom - thick planar, covalently bonded to three other atoms in a tightly populated, two-dimensional (2D), hexagonal single layer stable crystal hexagonal lattice, graphene is a flattened monolayer of carbon atoms. This study describes the production of in-situ amine placed in contact gently exfoliate graphene with many layers, low degradation contents, and average aspect ratios up to 10 micron and thickness up to 2-3 Nano meter. For this study, we developed Found that participants composites (AF-MGL/EpC) with graphene fractions between 0.5 and 2.0 wt percent. The graphene concentrations used to create the four separate samples were 0.0, 0.5, 1.5, and 2.0.

Keywords

Graphitic Carbon; Biocompatibility; Epoxy; Mechanical Characteristics; Composite; Photography

  1. Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R.E. Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J. Compos. Mater., 2006, 40(17), 1511- 1575.
  2. Phiri, J.; Gane, P.; Maloney, T.C. General overview of graphene: Production, properties and application in polymer composites. Ma- ter. Sci. Eng. B, 2017, 215, 9-28.
  3. Geim, A.K. Random walk to graphene (Nobel Lecture). Angew. Chem. Int. Ed., 2011, 50(31), 6966-6985.
  4. Zhang, L.L.; Zhou, R.; Zhao, X.S. Graphene-based materials as supercapacitor electrodes. J. Mater. Chem., 2010, 20(29), 5983- 5992.
  5. Young, R.J.; Kinloch, I.A.; Gong, L.; Novoselov, K.S. The me- chanics of graphene nanocomposites: A review. Compos. Sci. Technol., 2012, 72(12), 1459-1476.
  6. Dikin, D.A.; Stankovich, S.; Zimney, E.J.; Piner, R.D.; Dommett, G.H.B.; Evmenenko, G.; Nguyen, S.T.; Ruoff, R.S. Preparation and characterization of graphene oxide paper. Nature, 2007, 448(7152), 457-460.
  7. Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), 385-388.
  8. Frank, I.W.; Tanenbaum, D.M.; van der Zande, A.M.; McEuen, P.L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B. Microelectron. Nanometer. Struct. Process. Meas. Phenom., 2007, 25(6), 2558-2561.
  9. Tsai, J.-L.; Tu, J.-F. Characterizing mechanical properties of graph- ite using molecular dynamics simulation. Mater. Des., 2010, 31(1), 194-199.
  10. Sharma, S.; Kumar, P.; Chandra, R. Mechanical and thermal prop- erties of graphene–carbon nanotube-reinforced metal matrix com- posites: A molecular dynamics study. J. Compos. Mater., 2017, 51(23), 3299-3313.
  11. Cho, J.; Luo, J.J.; Daniel, I.M. Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis. Compos. Sci. Technol., 2007, 67(11), 2399-2407.
  12. Liu, F.; Ming, P.; Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B, 2007, 76(6), 064120.
  13. Kudin, K.N.; Ozbas, B.; Schniepp, H.C.; Prud'Homme, R.K.; Ak- say, I.A.; Car, R. Raman spectra of graphite oxide and functional- ized graphene sheets. Nano Lett., 2008, 8(1), 36-41.
  14. Van Lier, G.; Van Alsenoy, C.; Van Doren, V.; Geerlings, P. Ab initio study of the elastic properties of single-walled carbon nano- tubes and graphene. Chem. Phys. Lett., 2000, 326(1), 181-185.
  15. Liu, Y.; Xie, B.; Zhang, Z.; Zheng, Q.; Xu, Z. Mechanical proper- ties of graphene papers. J. Mech. Phys. Solids, 2012, 60(4), 591- 605.
  16. Neek-Amal, M.; Peeters, F. Graphene nanoribbons subjected to axial stress. Phys. Rev. B, 2010, 82(8), 085432.
  17. Jiang, J.-W.; Wang, J.-S.; Li, B. Young’s modulus of graphene: A molecular dynamics study. Phys. Rev. B, 2009, 80(11), 113405. Gupta, S.; Batra, R. Elastic properties and frequencies of free vibra- tions of single-layer graphene sheets. J. Comput. Theor. Nanosci., 2010, 7(10), 2151-2164.
  18. Shah, P.; Batra, R. Elastic moduli of covalently functionalized single layer graphene sheets. Comput. Mater. Sci., 2014, 95, 637- 650.
  19. Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39(1), 228-240.
  20. Chandrasekaran, S.; Sato, N.; Tölle, F.; Mülhaupt, R.; Fiedler, B.; Schulte, K. Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol., 2014, 97(Supplement C), 90-99.
  21. Li, P.; Zheng, Y.; Li, M.; Shi, T.; Li, D.; Zhang, A. Enhanced toughness and glass transition temperature of epoxy nanocompo- sites filled with solvent-free liquid-like nanocrystal-functionalized graphene oxide. Mater. Des., 2016, 89, 653-659.
Abstract Views: 5
PDF Views: 174

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.