Journal Press India®

Mechanical Analysis of Waste Leaf Sheath Date Palm Fibres for Composite Reinforcement

Vol 5 , Issue 2 , July - December 2022 | Pages: 45-53 | Research Paper  

https://doi.org/10.51976/jfsa.522207


Author Details ( * ) denotes Corresponding author

1. * Ankush Mishra, Assistant Professor, Department of Civil Engineering, KNIT Sultanpur, Uttar Pradesh, India (ankushmishra265@gmail.com)
2. Pankaj Kumar Singh, M.tech Research Scholar, Department of Civil Engineering, KNIT Sultanpur, Uttar Pradesh, India (pankaj02021992@gmail.com)

Leaf sheath date palm fibres, which are now regarded as agricultural waste, will be the subject of a multi-scale investigation proposed in this paper. To begin, two distinct kinds of bundles were discovered via the use of optical and electronic microscopy. Bundles exhibited a low degree of crystallinity, but lignin concentration of roughly 17 percent gave them highly cohesive structure and outstanding thermal stability, as well as unique behaviour in dynamic vapour sorption, according to XRD and biochemical studies. However, when tensile tests were performed on bundles, it was revealed that the stiffness and strength of the cell walls were inadequate, but the elongation was substantial when using Atomic Force Microscopy in mechanical mode. Force Microscopy Using Atoms As a result of these discoveries, trash may be employed as a composite reinforcement for increased acoustics and high energy absorption at a cheap cost.

Keywords

Mechanical properties; Natural fibres; Microstructural analysis


  1. Baley C, Bourmaud A. Average tensile properties of French elementary flax fibers. Mater Lett 2014;122:159–61. doi:http://dx.doi.org/10.1016/j.matlet.2014.02.030.

  2. Shah DU. Natural fibre composites: Comprehensive Ashby-type materials selection charts. Mater Des 2014;62:21–31. doi:10.1016/j.matdes.2014.05.002.

  3. Shah DU, Schubel PJ, Clifford MJ. Can flax replace E-glass in structural composites? A small wind turbine blade case study. Compos Part B Eng 2013;52:172–81. doi:10.1016/j.compositesb.2013.04.027.

  4. Le Duigou A, Baley C. Coupled micromechanical analysis and life cycle assessment as an integrated tool for natural fibre composites development. J Clean Prod 2014;83:61–9. doi:http://dx.doi.org/10.1016/j.jclepro.2014.07.027.

  5. Ruelle J, Yoshida M, Clair B, Thibaut B. Peculiar tension wood structure in Laetia procera

  6. (Poepp.) Eichl. (Flacourtiaceae). Trees 2007;21:345–55. doi:10.1007/s00468-007-0128-0.

  7. Ansell MP, Mwaikambo LY. 2 – The structure of cotton and other plant fibres. Handb. Text. Fibre Struct., 2009, p. 62–94. doi:10.1533/9781845697310.1.62

  8. Fengel D, Wenzkowski M. Studies on Kapok 1. Electron Microscopic Observations. Holzforshung 1986;40:137–41

  9. van Dam JEG, Gorshkova TA. Encyclopedia of Applied Plant Sciences. Elsevier; 2003. doi:10.1016/B0-12-227050-9/00046-6.

  10. Bourmaud A, Gibaud M, Lefeuvre A, Morvan C, Baley C. Influence of the morphology characters of the stem on the lodging resistance of Marylin flax. Ind Crops Prod 2015;66:27–37. doi:10.1016/j.indcrop.2014.11.047.

  11. Bodros E, Baley C. Study of the tensile properties of stinging nettle fibres (Urtica dioica). Mater Lett 2008;62:2143–5.

  12. Gorshkova TA, Wyatt SE, Salnikov V V, Gibeaut DM, Ibragimov MR, Lozovaya V V, et al. Cell-wall polysaccharides of developing flax plants. Plant Physiol 1996;110:721–9.

  13. Crônier D, Monties B, Chabbert B. Structure and Chemical Composition of Bast Fibers Isolated from Developing Hemp Stem. J Agric Food Chem 2005;53:8279–89.

  14. Roy A, Chakraborty S, Kundu SP, Basak RK, Majumder SB, Adhikari B. Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Bioresour Technol 2012;107:222–8. doi:http://dx.doi.org/10.1016/j.biortech.2011.11.073.

  15. Abdul Khalil HPS, Alwani MS, Islam MN, Suhaily SS, Dungani R, H’ng YM, et al. The use of bamboo fibres as reinforcements in composites. In: Elsevier, editor. Biofiber Reinf. Compos. Mater. Woodhead P, London: 2015, p. 488–524. doi:10.1533/9781782421276.4.488.

  16. Silva F de A, Chawla N, Filho RD de T. Tensile behavior of high performance natural (sisal) fibers. Compos Sci Technol 2008;68:3438–43. doi:10.1016/j.compscitech.2008.10.001.

  17. Gu H. Tensile behaviours of the coir fibre and related composites after NaOH treatment. Mater Des 2009;30:3931–4.

  18. Alsaeed T, Yousif BF, Ku H. The potential of using date palm fibres as reinforcement for polymeric composites. Mater Des 2013;43:177–84. doi:10.1016/j.matdes.2012.06.061.

  19. Food and Agriculture Organization of the United Nations. FAOSTAT dataset 2017.

  20. Chao C., Krueger R. The Date Palm (Phoenix dactylifera L.): Overview of Biology, Uses, and Cultivation. Hortscience 2007;42:1077–82.

  21. Barreveld WH. Dates palm products. FAO Agric Serv 1993;101.

  22. Nasser RA, Salem MZM, Hiziroglu S, Al-Mefarrej H., Mohareb A., Alam A., et al. Chemical Analysis of Different Parts of Date Palm (Phoenix dactylifera L.) Using Ultimate, Proximate and Thermo-Gravimetric Techniques for Energy Production. Energies 2016;9:374. doi:10.3390/en9050374.

  23. Chandrasekaran M, Bahkali A. Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology - Review. Saudi J Biol Sci 2013;20:105–20. doi:10.1016/j.sjbs.2012.12.004.

  24. El-Juhany LI. Surveying of Lignocellulosic Agricultural Residues in Some Major Cities of Saudi Arabia. vol. 1. Riyadh, Saudi Arabia: 2001.

  25. Alawar A, Hamed AM, Al-Kaabi K. Characterization of treated date palm tree fiber as composite reinforcement. Compos Part B Eng Nat Fiber Compos 2009;40:601–6. doi:10.1016/j.compositesb.2009.04.018.

  26. N. Sharma, P. Sharma, and A. K. Parashar, “Incorporation of Silica Fume and Waste Corn Cob Ash in Cement and Concrete for Sustainable Environment,” Mater Today Proc, Apr. 2022, doi: 10.1016/J.MATPR.2022.04.677.

  27. N. Sharma, P. Sharma, and A. K. Parashar, “Use of waste glass and demolished brick as coarse aggregate in production of sustainable concrete,” Mater Today Proc, May 2022, doi: 10.1016/J.MATPR.2022.04.602.

  28. Yusoff MZ., Sapuan S., Ismail N, Wirawan R. Mechanical properties of oil palm fibre reinforced epoxy composites. Sains Malaysiana 2010;39:87–92

Abstract Views: 1
PDF Views: 205

Advanced Search

News/Events

Institute of Managem...

Deccan Education Society Institute of Management Development and Re...

S.B. Patil Institute...

Pimpri Chinchwad Education Trust's S.B. Patil Institute of Mana...

D. Y. Patil IMCAM, A...

D. Y. Patil Institute of Master of Computer Applications & Managem...

Vignana Jyothi Insti...

Vignana Jyothi Institute of Management International Conference on ...

Department of Commer...

Department of Commerce, Faculty of Commerce & Business, University...

Birla Institute of M...

Birla Institute of Management Technology (BIMTECH) 3rd Pritam Singh M...

OP Jindal University...

OP Jindal University, India 4th International Conference on  ...

Department of MBA, N...

Department of MBA, Narayana Engineering College Nellore International...

Vignana Jyothi Insti...

Vignana Jyothi Institute of Management Conference Proceedings,...

Online Proceedings R...

Conference Proceedings, March 2023 ISBN: 978-81-956810-6-8 ...

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.