Journal Press India®

Effect of Privacy, Trust, and Risk Concerns on Mobile App-based Shopping: An Empirical Study in the Context of India

Vol 7 , Issue 2 , July - December 2020 | Pages: 1-26 | Research Paper  

 
Article has been added to the cart.View Cart (0)
https://doi.org/10.17492/jpi.manthan.v7i2.722010


Author Details ( * ) denotes Corresponding author

1. * Neeru Kapoor, Associate Professor, Department of Commerce, Associate Professor, Delhi University, New Delhi, Delhi, India (drneerukapoor@yahoo.co.in)
2. Chandan Kumar Singh, Research Scholar, Department of Commerce, Delhi School of Economics, New Delhi, Delhi, India (cksingh90.du@gmail.com)

Mobile applications are strongly emerging as a medium of purchase for consumers all across the world,while in India we have still not been able to realise the full potential of this medium. India is a leading market not only in the Asia-Pacific region but the world over for mobile usage, internet usage, mobile internet usage, despite that fact there has been a slow growth of mobile application based shopping. Thus, the purpose of the current study has been to understand about consumers’ demographic profile with respect to their preference for mobile app-based shopping and highlight the various barriers coming in the way of its growth, such as, lack of consumer trust, perceived security risk and privacy concerns. For the purpose, the data which was collected through a structured questionnaire from 1,498 respondents was analysed. This study used the multinomial logistic regression model to empirically investigate as to how some specific factors such as privacy, trust, and risk of payment security concerns influence the preference for mobile-app based shopping over the brick and mortar markets for retail shopping among different age, gender, occupational and income groups of consumers in India.

Keywords

Mobile-app based shopping; Privacy; Trust, Security risk; Demographic variables.

  1. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes50(2), 179-211.
  2. Ajzen, I., & Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological Bulletin84(5), 888. doi: 10.1037/0033-2909.84.5.888
  3. Alreck, P., & Settle, R. B. (2002). Gender effects on Internet, catalogue and store shopping. Journal of Database Marketing & Customer Strategy Management9(2), 150-162. doi: 10.1057/palgrave.jdm.3240071
  4. Barnes, S. J., & Scornavacca, E. (2004). Mobile marketing: The role of permission and acceptance. International Journal of Mobile Communications, 2(2), 128-139.
  5. Bauer, R.A. (1960) Consumer Behavior as Risk Taking. In: Hancock, R.S., (Ed.), Dynamic Marketing for a Changing World, Proceedings of the 43rd. Conference of the American Marketing Association, 389-398
  6. Bellman, S., Potter, R. F., Treleaven-Hassard, S., Robinson, J. A., & Varan, D. (2011). The effectiveness of branded mobile phone apps. Journal of Interactive Marketing25(4), 191-200. doi: 10.1016/j.intmar.2011.06.001
  7. Castañeda, J. A., & Montoro, F. J. (2007). The effect of Internet general privacy concern on customer behavior. Electronic Commerce Research7(2), 117-141. doi: 10.1007/s10660-007-9000-y
  8. Celik, H., & Phau, I. (2016). Customer online shopping anxiety within the Unified Theory of Acceptance and Use Technology (UTAUT) framework. Asia Pacific Journal of Marketing and Logistics, 28 No. 2. doi: 10.1108/APJML-05-2015-0077
  9. Chang, C. C. (2015). Exploring mobile application customer loyalty: The moderating effect of use contexts. Telecommunications Policy39(8), 678-690. doi: 10.1016/j.telpol.2015.07.008
  10. Charland, A., & Leroux, B. (2011). Mobile application development: web vs. native. Communications of the  Association for Computing Machinery54(5), 49-53. doi:10.1145/1941487.1941504
  11. Chhonker, M. S., Verma, D., & Kar, A. K. (2017). Review of technology adoption frameworks in mobile commerce. Procedia Computer Science122, 888-895. doi: 10.1016/j.procs.2017.11.451
  12. Chong, A. Y. L. (2013). Mobile commerce usage activities: The roles of demographic and motivation variables. Technological Forecasting and Social Change80(7), 1350-1359. doi: 10.1016/j.techfore.2012.12.011
  13. Cozzarin, B. P., & Dimitrov, S. (2016). Mobile commerce and device specific perceived risk. Electronic Commerce Research16(3), 335-354. doi: 10.1007/s10660-015-9204-5
  14. Cramer, J. S. (2002). The origins of logistic regression (Technical report). 119. Tinbergen Institute. pp. 167–178. doi:10.2139/ssrn.360300.
  15. Dabholkar, P. A., & Bagozzi, R. P. (2002). An attitudinal model of technology-based self-service: Moderating effects of consumer traits and situational factors. Journal of the Academy of Marketing Science30(3), 184-201. doi: 10.1177%2F0092070302303001
  16. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3)319-340. doi: 10.2307/249008
  17. Dowling, G. R., & Staelin, R. (1994). A model of perceived risk and intended risk-handling activity. Journal of Consumer Research21(1), 119-134. doi: 10.1086/209386
  18. Engel, J., & Miniard, P. (1986). Consumer Behavior. New York: The Dryden Press.
  19. Faqih, K. M., & Jaradat, M. I. R. M. (2015). Assessing the moderating effect of gender differences and individualism-collectivism at individual-level on the adoption of mobile commerce technology: TAM3 perspective. Journal of Retailing and Consumer Services22(1), 37-52. doi: 10.1016/j.jretconser.2014.09.006
  20. Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.
  21. Gao, L., Waechter, K. A., & Bai, X. (2015). Understanding consumers’ continuance intention towards mobile purchase: A theoretical framework and empirical study–A case of China. Computers in Human Behavior53, 249-262. doi: 10.1016/j.chb.2015.07.014
  22. Gefen, D., & Straub, D. W. (1997). Gender differences in the perception and use of e-mail: An extension to the technology acceptance model. MIS Quarterly, 21(4), 389-400.  doi: 10.2307/249720
  23. Gensch, D. H., & Recker, W. W. (1979). The multinomial, multi-attribute logit choice model. Journal of Marketing Research, 16, 124-132.
  24. Goh, T. T., & Sun, S. (2014). Exploring gender differences in Islamic mobile banking acceptance. Electronic Commerce Research14(4), 435-458. doi: 10.1007/s10660-014-9150-7
  25. Grewal, D., Levy, M., & Kumar, V. (2009). Customer experience management in retailing: An organizing framework. Journal of Retailing85(1), 1-14. doi: 10.1016/j.jretai.2009.01.001
  26. Groß, M. (2016). Impediments to mobile shopping continued usage intention: A trust-risk-relationship. Journal of Retailing and Consumer Services33,(6) 109-119. doi: 10.1016/j.jretconser.2016.08.013
  27. Gurtner, S., Reinhardt, R., & Soyez, K. (2014). Designing mobile business applications for different age groups. Technological Forecasting and Social Change88, 177-188. doi: 10.1016/j.techfore.2014.06.020
  28. Hardie, B. G. S., Johnson, E. J., & Fader, P. S. (1993). Modelling loss aversion and reference dependence effects on brand choice. Mark Sci (Fall), 12(4), 378 - 394.
  29. Hauser, J. R., & Urban, G. L. (1977). A normative methodology for modelling consumer response to innovation. Oper Res, 25(4), 579-619.
  30. Huang, L., Lu, X., & Ba, S. (2016). An empirical study of the cross-channel effects between web and mobile shopping channels. Information & Management53(2), 265-278. doi: 10.1016/j.im.2015.10.006
  31. Hung, M. C., Yang, S. T., & Hsieh, T. C. (2012). An examination of the determinants of mobile shopping continuance. International Journal of Electronic Business Management10(1), 29.
  32. Inman, J. J., & Nikolova, H. (2017). Shopper-facing retail technology: A retailer adoption decision framework incorporating shopper attitudes and privacy :concerns. Journal of Retailing93(1), 7-28. doi: 10.1016/j.jretai.2016.12.006
  33. Kaka, N., Madgavkar, A., Kshirsagar, A., Gupta, R., Manyika, J., Bahl, K., & Gupta, S. (2019). Digital India: Technology to transform a connected nation. McKinsey Global Institute, March.
  34. Kaul, S., Sahay, A., & Koshy, A. (2010). Impact of initial trust image on shopper trust and patronage intentions. International Journal of Retail & Distribution Management, 38(4), 275-296. doi:10.1108/09590551011032090
  35. Keith, M. J., Thompson, S. C., Hale, J., Lowry, P. B., & Greer, C. (2013). Information disclosure on mobile devices: Re-examining privacy calculus with actual user behavior. International Journal of Human-Computer Studies71(12), 1163-1173. doi: 10.1016/j.ijhcs.2013.08.016
  36. Kim, J., Park, Y., Kim, C., & Lee, H. (2014). Mobile application service networks: Apple’s App Store. Service Business8(1), 1-27. doi: 10.1007/s11628-013-0184-z
  37. Kleijnen, M., De Ruyter, K., & Wetzels, M. (2007). An assessment of value creation in mobile service delivery and the moderating role of time consciousness. Journal of Retailing83(1), 33-46. doi: 10.1016/j.jretai.2006.10.004
  38. Ko, E., Kim, E. Y., & Lee, E. K. (2009). Modeling consumer adoption of mobile shopping for fashion products in Korea. Psychology & Marketing26(7), 669-687. doi: 10.1002/mar.20294
  39. Krishnamurthi,  L., & Raj, S.P. (1991).  An empirical analysis of the relationship between brand loyalty and consumer price elasticity. Mark Sci, 10(2), 172 - 83.
  40. Kumar, A., & Mukherjee, A. (2013). Shop while you talk: Determinants of purchase intentions through a mobile device. International Journal of Mobile Marketing8(1), 23-37.
  41. Lai, J. Y., Debbarma, S., & Ulhas, K. R. (2012). An empirical study of consumer switching behaviour towards mobile shopping: a Push–Pull–Mooring model. International Journal of Mobile Communications10(4), 386-404. doi: 10.1504/IJMC.2012.048137
  42. Lattin, J. M. (1987). A model of balanced choice behavior. Mark Sci, 6(1), 48 - 65.
  43. Laukkanen, T. (2016). Consumer adoption versus rejection decisions in seemingly similar service innovations: The case of the Internet and mobile banking. Journal of Business Research69(7), 2432-2439. doi: 10.1016/j.jbusres.2016.01.013
  44. Lee, D., Moon, J., Kim, Y. J., & Mun, Y. Y. (2015). Antecedents and consequences of mobile phone usability: Linking simplicity and interactivity to satisfaction, trust, and brand loyalty. Information & Management52(3), 295-304. doi: 10.1016/j.im.2014.12.001
  45. Leon, S. (2018). Service mobile apps: a millennial generation perspective. Industrial Management & Data Systems, 118 (9), 1837-1860. doi:10.1108/IMDS-10-2017-0479
  46. Leong, L. Y., Ooi, K. B., Chong, A. Y. L., & Lin, B. (2013). Modeling the stimulators of the behavioral intention to use mobile entertainment: does gender really matter? Computers in Human Behavior29(5), 2109-2121. doi: 10.1016/j.chb.2013.04.004
  47. Lian, J. W., & Yen, D. C. (2014). Online shopping drivers and barriers for older adults: Age and gender differences. Computers in Human Behavior37, 133-143. doi: 10.1016/j.chb.2014.04.028
  48. Malhotra, N. K., Kim, S. S., & Agarwal, J. (2004). Internet users' information privacy concerns (IUIPC): The construct, the scale, and a causal model. Information Systems Research15(4), 336-355. doi: 10.1287/isre.1040.0032
  49. Mani, Z., & Chouk, I. (2017). Drivers of consumers’ resistance to smart products. Journal of Marketing Management33(1-2), 76-97. doi: 10.1080/0267257X.2016.1245212
  50. Marriott, H. R., & Williams, M. D. (2018). Exploring consumers perceived risk and trust for mobile shopping: A theoretical framework and empirical study. Journal of Retailing and Consumer Services42, 133-146. doi: 10.1016/j.jretconser.2018.01.017
  51. McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing and validating trust measures for e-commerce: An integrative typology. Information Systems Research13(3), 334-359. doi: 10.1287/isre.13.3.334.81
  52. Mukherjee, A., & Dubé, L. (2012). Mixing emotions: The use of humor in fear advertising. Journal of Consumer Behaviour11(2), 147-161. doi: 10.1002/cb.389
  53. Natarajan, T., Balasubramanian, S. A., & Kasilingam, D. L. (2017). Understanding the intention to use mobile shopping applications and its influence on price sensitivity. Journal of Retailing and Consumer Services37(1), 8-22. doi: 10.1016/j.jretconser.2017.02.010
  54. Nisha, N., Iqbal, M., Rifat, A., & Idrish, S. (2015). Mobile health services: A new paradigm for health care systems. International Journal of Asian Business and Information Management (IJABIM)6(1), 1-17. doi: 10.4018/IJABIM.2015010101
  55. Nissenbaum, H. (1998). Protecting privacy in an information age: The problem of privacy in public. Law and Philosophy,17(5-6), 559-596. doi: 10.2307/3505189
  56. Noh, M. J., & Lee, K. T. (2016). An analysis of the relationship between quality and user acceptance in smartphone apps. Information Systems and e-Business Management14(2), 273-291. doi: 10.1007/s10257-015-0283-6
  57. Pantano, E., & Priporas, C. V. (2016). The effect of mobile retailing on consumers' purchasing experiences: A dynamic perspective. Computers in Human Behavior61, 548-555. doi: 10.1016/j.chb.2016.03.071
  58. Park, C., Jun, J. K., & Lee, T. M. (2015). Do mobile shoppers feel smart in the smartphone age? International Journal of Mobile Communications13(2), 157-171.
  59. Pieri, M., & Diamantinir, D. (2010). Young people, elderly and ICT. Procedia-Social and Behavioral Sciences2(2), 2422-2426. doi: 10.1016/j.sbspro.2010.03.348
  60. Pope-Davis, D. B., & Twing, J. S. (1991). The effects of age, gender, and experience on measures of attitude regarding computers. Computers in Human Behavior7(4), 333-339. doi: 10.1016/0747-5632(91)90020-2
  61. Pradhan Mantri Jan-Dhan Yojana. (2018, November 20). Retrieved from  pmjdy.gov.in/account
  62. Reisenwitz, T., Iyer, R., Kuhlmeier, D. B., & Eastman, J. K. (2007). The elderly's internet usage: An updated look. Journal of Consumer Marketing, 24(7), 406-418. doi: 10.1108/07363760710834825
  63. Rhee, K. Y., & Kim, W. B.  (2004). The Adoption and Use of the Internet in South Korea. Journal of Computer-Mediated Communication9(4), 35–42.
  64. Roy, S. K., Balaji, M. S., Quazi, A., & Quaddus, M. (2018). Predictors of customer acceptance of and resistance to smart technologies in the retail sector. Journal of Retailing and Consumer Services42, 147-160. doi: 10.1016/j.jretconser.2018.02.005
  65. Schiffman, L. G., Wisenblit, J., & Kumar, S. R. (2017). Consumer Behavior.  India: Pearson Education.
  66. Shaw, N., & Sergueeva, K. (2019). The non-monetary benefits of mobile commerce: Extending UTAUT2 with perceived value. International Journal of Information Management45, 44-55. doi: 10.1016/j.ijinfomgt.2018.10.024
  67. Sheehan, K. B., & Hoy, M. G. (2000). Dimensions of privacy concern among online consumers. Journal of Public Policy and Marketing19(1), 62-73. doi: 10.1509%2Fjppm.19.1.62.16949
  68. Silk, A. J., & Urban, G. L. (1978).  Pre-test-market evaluation of new packaged goods: A model and measurement methodology. Journal of Marketing Research, 15(2), 171-91.
  69. Smith, M., (2016, Sep 15). Retail and mobile apps: what works and why. Retrived from: https://www.apptentive.com/blog/2016/09/15/retail-mobile-apps-works/.
  70. Stewart, K. A., & Segars, A. H. (2002). An empirical examination of the concern for information privacy instrument. Information Systems Research13(1), 36-49. doi:10.1287/isre.13.1.36.97
  71. Talke, K., & Heidenreich, S. (2014). How to overcome pro change bias: Incorporating passive and active innovation resistance in innovation decision models. Journal of Product Innovation Management31(5), 894-907. doi: 10.1111/jpim.12130
  72. Tang, A. K. (2019). A systematic literature review and analysis on mobile apps in m-commerce: Implications for future research. Electronic Commerce Research and Applications37, 100885. doi: 10.1016/j.elerap.2019.100885
  73. Teo, T. S. H. (2001). Demographic and Motivation Variables Associated with Internet Usage Activities. Internet Research, 11(2), 125–137.
  74. Trocchia, P. J., & Janda, S. (2000). A phenomenological investigation of Internet usage among older individuals. Journal of Consumer Marketing, 17 (7),  605-616. doi:10.1108/07363760010357804
  75. Venkatesh, V.,  & Morris, M. G. (2000). Why don't men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS Quarterly, 24(1),115-139. doi: 10.2307/3250981
  76. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. doi: 10.2307/30036540
  77. Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. doi: 10.2307/41410412
  78. Wagner, G. (2015). Multichannel e-commerce: Consumer behavior across e-channels and e-channel touchpoints. doi: 10.13140/RG.2.1.1918.0242
  79. Wagner, N., Hassanein, K., & Head, M. (2010). Computer use by older adults: A multi-disciplinary review. Computers in Human Behavior26(5), 870-882. doi: 10.1016/j.chb.2010.03.029
  80. Wang, H. Y., & Wang, S. H. (2010). Predicting mobile hotel reservation adoption: Insight from a perceived value standpoint. International Journal of Hospitality Management29(4), 598-608. doi: 10.1016/j.ijhm.2009.11.001
  81. Wang, T., Duong, T. D., & Chen, C. C. (2016). Intention to disclose personal information via mobile applications: A privacy calculus perspective. International Journal of Information Management36(4), 531-542. doi: 10.1016/j.ijinfomgt.2016.03.003
  82. Williams, R. (2017). Multinomial Logit Models-Overview. Department of Sociology, University of Notre Dame.
  83. Winer, R. S. (1986). A reference price model of brand choice for frequently purchased products. Journal of  Consumer Research,13(2), 250-256.
  84. Wu, L., Li, J. Y., & Fu, C. Y. (2011). The adoption of mobile healthcare by hospital's professionals: An integrative perspective. Decision Support Systems51(3), 587-596. DOI: 10.1016/j.dss.2011.03.003
  85. Yang, Q., Pang, C., Liu, L., Yen, D. C., & Tarn, J. M. (2015). Exploring consumer perceived risk and trust for online payments: An empirical study in China’s younger generation. Computers in Human Behavior50, 9-24. doi: 10.1016/j.chb.2015.03.058
  86. Yuan, S., Liu, Y., Yao, R., & Liu, J. (2016). An investigation of users’ continuance intention towards mobile banking in China. Information Development32(1), 20-34. doi: 10.1177%2F0266666914522140
  87. Zhang, L., Zhu, J., & Liu, Q. (2012). A meta-analysis of mobile commerce adoption and the moderating effect of culture. Computers in Human Behavior28(5), 1902-1911. doi: 10.1016/j.chb.2012.05.008.
Abstract Views: 43
PDF Views: 26

Advanced Search

News/Events

3rd International Co...

About the Conference At the outset, the multifarious Covid-19 pande...

International Confer...

ABOUT THE INTERNATIONAL CONFERENCE Today, the world of business is ...

Call for Reviewers

In keeping with JPI’s policy of commitment to high standards of ...

Call for papers

JPI invites original and unpublished manuscripts in the areas of comme...

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.